Publications

24 Results
Skip to search filters

Sierra/SD - Theory Manual (V.5.10)

Crane, Nathan K.; Day, David M.; Dohrmann, Clark R.; Stevens, B.L.; Lindsay, Payton L.; Plews, Julia A.; Vo, Johnathan V.; Bunting, Gregory B.; Walsh, Timothy W.; Joshi, Sidharth S.

Sierra/SD provides a massively parallel implementation of structural dynamics finite element analysis, required for high fidelity, validated models used in modal, vibration, static and shock analysis of structural systems. This manual describes the theory behind many of the constructs in Sierra/SD. For a more detailed description of how to use Sierra/SD, we refer the reader to User's Manual. Many of the constructs in Sierra/SD are pulled directly from published material. Where possible, these materials are referenced herein. However, certain functions in Sierra/SD are specific to our implementation. We try to be far more complete in those areas. The theory manual was developed from several sources including general notes, a programmer_notes manual, the user's notes and of course the material in the open literature.

More Details

Sierra/SD - User's Manual - 5.10

Crane, Nathan K.; Day, David M.; Dohrmann, Clark R.; Stevens, B.L.; Lindsay, Payton L.; Plews, Julia A.; Vo, Johnathan V.; Bunting, Gregory B.; Walsh, Timothy W.; Joshi, Sidharth S.

Sierra/SD provides a massively parallel implementation of structural dynamics finite element analysis, required for high-fidelity, validated models used in modal, vibration, static and shock analysis of weapons systems. This document provides a user’s guide to the input for Sierra/SD. Details of input specifications for the different solution types, output options, element types and parameters are included. The appendices contain detailed examples, and instructions for running the software on parallel platforms.

More Details

Sierra/SD - How To Manual - 5.10

Crane, Nathan K.; Day, David M.; Dohrmann, Clark R.; Stevens, B.L.; Lindsay, Payton L.; Plews, Julia A.; Vo, Johnathan V.; Bunting, Gregory B.; Joshi, Sidharth S.; Beale, Dagny; Chen, Mark J.; Pepe, Justin P.

The How To Manual supplements the User’s Manual and the Theory Manual. The goal of the How To Manual is to reduce learning time for complex end to end analyses. These documents are intended to be used together. See the User’s Manual for a complete list of the options for a solution case. All the examples are part of the Sierra/SD test suite. Each runs as is. The organization is similar to the other documents: How to run, Commands, Solution cases, Materials, Elements, Boundary conditions, and then Contact. The table of contents and index are indispensable. The Geometric Rigid Body Modes section is shared with the Users Manual.

More Details

Sierra/SD: Verification Test Manual - 5.10

Crane, Nathan K.; Day, David M.; Dohrmann, Clark R.; Stevens, B.L.; Lindsay, Payton L.; Plews, Julia A.; Vo, Johnathan V.; Bunting, Gregory B.; Walsh, Timothy W.; Joshi, Sidharth S.

This document presents tests from the Sierra Structural Mechanics verification test suite. Each of these tests is run nightly with the Sierra/SD code suite and the results of the test checked versus the correct analytic result. For each of the tests presented in this document the test setup, derivation of the analytic solution, and comparison of the Sierra/SD code results to the analytic solution is provided. This document can be used to confirm that a given code capability is verified or referenced as a compilation of example problems.

More Details

Sierra/SD - Theory Manual - 5.8

Crane, Nathan K.; Day, David M.; Dohrmann, Clark R.; Stevens, B.L.; Lindsay, Payton L.; Plews, Julia A.; Vo, Johnathan V.; Bunting, Gregory B.; Walsh, Timothy W.; Joshi, Sidharth S.

Sierra/SD provides a massively parallel implementation of structural dynamics finite element analysis, required for high fidelity, validated models used in modal, vibration, static and shock analysis of structural systems. This manual describes the theory behind many of the constructs in Sierra/SD. For a more detailed description of how to use Sierra/SD, we refer the reader to User's Manual. Many of the constructs in Sierra/SD are pulled directly from published material. Where possible, these materials are referenced herein. However, certain functions in Sierra/SD are specific to our implementation. We try to be far more complete in those areas. The theory manual was developed from several sources including general notes, a programmer_notes manual, the user's notes and of course the material in the open literature. This page intentionally left blank.

More Details

Sierra/SD - User's Manual - 5.8

Beale, Dagny; Bunting, Gregory B.; Chen, Mark J.; Crane, Nathan K.; Day, David M.; Dohrmann, Clark R.; Joshi, Sidharth S.; Lindsay, Payton L.; Plews, Julia A.; Stevens, B.L.; Vo, Johnathan V.

Sierra/SD provides a massively parallel implementation of structural dynamics finite element analysis, required for high-fidelity, validated models used in modal, vibration, static and shock analysis of weapons systems. This document provides a user's guide to the input for Sierra/SD. Details of input specifications for the different solution types, output options, element types and parameters are included. The appendices contain detailed examples, and instructions for running the software on parallel platforms.

More Details

Sierra/SD - How To Manual - 5.8

Crane, Nathan K.; Day, David M.; Dohrmann, Clark R.; Stevens, B.L.; Lindsay, Payton L.; Plews, Julia A.; Vo, Johnathan V.; Bunting, Gregory B.; Walsh, Timothy W.; Joshi, Sidharth S.

The How To Manual supplements the User’s Manual and the Theory Manual. The goal of the How To Manual is to reduce learning time for complex end to end analyses. These documents are intended to be used together. See the User’s Manual for a complete list of the options for a solution case. All the examples are part of the Sierra/SD test suite. Each runs as is. The organization is similar to the other documents: How to run, Commands, Solution cases, Materials, Elements, Boundary conditions, and then Contact. The table of contents and index are indispensable. The Geometric Rigid Body Modes section is shared with the Users Manual.

More Details

Sierra/SD - Verification Test Manual - 5.8

Beale, Dagny; Bunting, Gregory B.; Chen, Mark J.; Crane, Nathan K.; Day, David M.; Dohrmann, Clark R.; Joshi, Sidharth S.; Lindsay, Payton L.; Plews, Julia A.; Stevens, B.L.; Vo, Johnathan V.

This document presents tests from the Sierra Structural Mechanics verification test suite. Each of these tests is run nightly with the Sierra/SD code suite and the results of the test checked versus the correct analytic result. For each of the tests presented in this document the test setup, derivation of the analytic solution, and comparison of the Sierra/SD code results to the analytic solution is provided. This document can be used to confirm that a given code capability is verified or referenced as a compilation of example problems.

More Details

Sierra/SD - User's Manual - 5.6

Beale, Dagny; Bunting, Gregory B.; Chen, Mark J.; Crane, Nathan K.; Day, David M.; Dohrmann, Clark R.; Joshi, Sidharth S.; Lindsay, Payton L.; Plews, Julia A.; Stevens, B.L.; Vo, Johnathan V.

Sierra/SD provides a massively parallel implementation of structural dynamics finite element analysis, required for high-fidelity, validated models used in modal, vibration, static and shock analysis of weapons systems. This document provides a user's guide to the input for Sierra/SD. Details of input specifications for the different solution types, output options, element types and parameters are included. The appendices contain detailed examples, and instructions for running the software on parallel platforms.

More Details

Sierra/SD - Verification Test Manual - 5.6

Crane, Nathan K.; Day, David M.; Dohrmann, Clark R.; Stevens, B.L.; Lindsay, Payton L.; Plews, Julia A.; Vo, Johnathan V.; Bunting, Gregory B.; Walsh, Timothy W.; Joshi, Sidharth S.

This document presents tests from the Sierra Structural Mechanics verification test suite. Each of these tests is run nightly with the Sierra/SD code suite and the results of the test checked versus the correct analytic result. For each of the tests presented in this document the test setup, derivation of the analytic solution, and comparison of the Sierra/SD code results to the analytic solution is provided. This document can be used to confirm that a given code capability is verified or referenced as a compilation of example problems.

More Details

Sierra/SD - Theory Manual - 5.6

Crane, Nathan K.; Day, David M.; Dohrmann, Clark R.; Stevens, B.L.; Lindsay, Payton L.; Plews, Julia A.; Vo, Johnathan V.; Bunting, Gregory B.; Walsh, Timothy W.; Joshi, Sidharth S.

Sierra/SD provides a massively parallel implementation of structural dynamics finite element analysis, required for high fidelity, validated models used in modal, vibration, static and shock analysis of structural systems. This manual describes the theory behind many of the constructs in Sierra/SD. For a more detailed description of how to use Sierra/SD, we refer the reader to User's Manual. Many of the constructs in Sierra/SD are pulled directly from published material. Where possible, these materials are referenced herein. However, certain functions in Sierra/SD are specific to our implementation. We try to be far more complete in those areas. The theory manual was developed from several sources including general notes, a programmer_notes manual, the user's notes and of course the material in the open literature.

More Details

Sierra/SD - How To Manual - 5.6

Crane, Nathan K.; Day, David M.; Dohrmann, Clark R.; Stevens, B.L.; Lindsay, Payton L.; Plews, Julia A.; Vo, Johnathan V.; Bunting, Gregory B.; Walsh, Timothy W.; Joshi, Sidharth S.

The How To Manual supplements the User’s Manual and the Theory Manual. The goal of the How To Manual is to reduce learning time for complex end to end analyses. These documents are intended to be used together. See the User’s Manual for a complete list of the options for a solution case. All the examples are part of the Sierra/SD test suite. Each runs as is. The organization is similar to the other documents: How to run, Commands, Solution cases, Materials, Elements, Boundary conditions, and then Contact. The table of contents and index are indispensable. The Geometric Rigid Body Modes section is shared with the Users Manual.

More Details

Sierra/SD - Verification Test Manual - 5.4

Crane, Nathan K.; Day, David M.; Dohrmann, Clark R.; Stevens, B.L.; Lindsay, Payton L.; Plews, Julia A.; Vo, Johnathan V.; Bunting, Gregory B.; Walsh, Timothy W.; Joshi, Sidharth S.

This document presents tests from the Sierra Structural Mechanics verification test suite. Each of these tests is run nightly with the Sierra/SD code suite and the results of the test checked versus the correct analytic result. For each of the tests presented in this document the test setup, derivation of the analytic solution, and comparison of the Sierra/SD code results to the analytic solution is provided. This document can be used to confirm that a given code capability is verified or referenced as a compilation of example problems.

More Details

Sierra/SD - User's Manual - 5.4

Crane, Nathan K.; Day, David M.; Dohrmann, Clark R.; Stevens, B.L.; Lindsay, Payton L.; Plews, Julia A.; Vo, Johnathan V.; Bunting, Gregory B.; Walsh, Timothy W.; Joshi, Sidharth S.

Sierra/SD provides a massively parallel implementation of structural dynamics finite element analysis, required for high-fidelity, validated models used in modal, vibration, static and shock analysis of weapons systems. This document provides a user's guide to the input for Sierra/SD. Details of input specifications for the different solution types, output options, element types and parameters are included. The appendices contain detailed examples, and instructions for running the software on parallel platforms.

More Details

Sierra/SD - Theory Manual - 5.4

Crane, Nathan K.; Day, David M.; Dohrmann, Clark R.; Stevens, B.L.; Lindsay, Payton L.; Plews, Julia A.; Vo, Johnathan V.; Bunting, Gregory B.; Walsh, Timothy W.; Joshi, Sidharth S.

Sierra/SD provides a massively parallel implementation of structural dynamics finite element analysis, required for high fidelity, validated models used in modal, vibration, static and shock analysis of structural systems. This manual describes the theory behind many of the constructs in Sierra/SD. For a more detailed description of how to use Sierra/SD, we refer the reader to User's Manual. Many of the constructs in Sierra/SD are pulled directly from published material. Where possible, these materials are referenced herein. However, certain functions in Sierra/SD are specific to our implementation. We try to be far more complete in those areas. The theory manual was developed from several sources including general notes, a programmer_notes manual, the user's notes and of course the material in the open literature.

More Details

Sierra/SD - How To Manual - 5.4

Crane, Nathan K.; Day, David M.; Dohrmann, Clark R.; Stevens, B.L.; Lindsay, Payton L.; Plews, Julia A.; Vo, Johnathan V.; Bunting, Gregory B.; Walsh, Timothy W.; Joshi, Sidharth S.

The How To Manual supplements the User’s Manual and the Theory Manual. The goal of the How To Manual is to reduce learning time for complex end to end analyses. These documents are intended to be used together. See the User’s Manual for a complete list of the options for a solution case. All the examples are part of the Sierra/SD test suite. Each runs as is. The organization is similar to the other documents: How to run, Commands, Solution cases, Materials, Elements, Boundary conditions, and then Contact. The table of contents and index are indispensable. The Geometric Rigid Body Modes section is shared with the Users Manual.

More Details

Sierra/SD - User's Manual (V.5.2)

Crane, Nathan K.; Day, David M.; Dohrmann, Clark R.; Stevens, B.L.; Lindsay, Payton L.; Hardesty, Sean H.; Vo, Johnathan V.; Bunting, Gregory B.; Walsh, Timothy W.

Sierra/SD provides a massively parallel implementation of structural dynamics finite element analysis, required for high-fidelity, validated models used in modal, vibration, static and shock analysis of weapons systems. This document provides a user’s guide to the input for Sierra/SD. Details of input specifications for the different solution types, output options, element types and parameters are included. The appendices contain detailed examples, and instructions for running the software on parallel platforms.

More Details

A simple levelset contact algorithm for large overlap removal and robust preloads

Mosby, Matthew D.; Tupek, Michael R.; Vo, Johnathan V.

A simple approach to simulate contact between deformable objects is presented which relies on levelset descriptions of the Lagrangian geometry and an optimization-based solver. Modeling contact between objects remains a significant challenge for computational mechanics simulations. Common approaches are either plagued by lack of robustness or are exceedingly complex and require a significant number of heuristics. In contrast, the levelset contact approach presented herein is essentially heuristic free. Furthermore, the presented algorithm enables resolving and enforcing contact between objects with a significant amount of initial overlap. Examples demonstrating the feasibility of this approach are shown, including the standard Hertz contact problem, the robust removal of overlap between two overlapping blocks, and overlap-removal and pre-load for a bolted configuration.

More Details

ExaWind: Exascale Predictive Wind Plant Flow Physics Modeling

Sprague, Michael S.; Ananthan, Shreyas A.; Binyahib, Roba B.; Brazell, Michael B.; de Frahan, Marc H.; King, Ryan N.; Mullowney, Paul M.; Rood, Jon R.; Sharma, Ashesh S.; Thomas, Stephen T.; Vijayakumar, Ganesh V.; Crozier, Paul C.; Berger-Vergiat, Luc B.; Cheung, Lawrence C.; Dement, David C.; deVelder, Nathaniel d.; Glaze, D.J.; Hu, Jonathan J.; Knaus, Robert C.; Lee, Dong H.; Matula, Neil M.; Okusanya, Tolulope O.; Overfelt, James R.; Rajamanickam, Sivasankaran R.; Sakievich, Philip S.; Smith, Timothy A.; Vo, Johnathan V.; Williams, Alan B.; Yamazaki, Ichitaro Y.; Turner, William J.; Prokopenko, Andrey P.; Wilson, Robert V.; Moser, &.; Melvin, Jeremy M.; Sitaraman, &.

Abstract not provided.

ExaWind: Exascale Predictive Wind Plant Flow Physics Modeling

Sprague, M.S.; Ananthan, S.A.; Brazell, M.x.; Glaws, A.G.; De Frahan, M.D.; King, R.K.; Natarajan, M.N.; Rood, J.R.; Sharma, A.L.; Sirydowicz, K.S.; S., Thomas S.; Vijaykumar, G.V.; Yellapantula, S.Y.; Crozier, Paul C.; Berger-Vergiat, Luc B.; Cheung, Lawrence C.; Glaze, D.J.; Hu, Jonathan J.; Knaus, Robert C.; Lee, Dong H.; Okusanya, Tolulope O.; Overfelt, James R.; Rajamanickam, Sivasankaran R.; Sakievich, Philip S.; Smith, Timothy A.; Vo, Johnathan V.; Williams, Alan B.; Yamazaki, Ichitaro Y.; Turner, J.H.; Prokopenko, A.P.; Wilson, R.W.; Moser, R.M.; Melvin, J.M.; Sitaraman, J S.

Abstract not provided.

24 Results
24 Results