Publications

23 Results
Skip to search filters

Gram scale synthesis of Fe/FexOy core-shell nanoparticles and their incorporation into matrix-free superparamagnetic nanocomposites

Journal of Materials Research

Watt, John D.; Bleier, Grant C.; Romero, Zachary W.; Hance, Bradley G.; Bierner, Jessica A.; Monson, Todd M.; Huber, Dale L.

Significant reductions recently seen in the size of wide-bandgap power electronics have not been accompanied by a relative decrease in the size of the corresponding magnetic components. To achieve this, a new generation of materials with high magnetic saturation and permeability are needed. Here, we develop gram-scale syntheses of superparamagnetic Fe/FexOy core-shell nanoparticles and incorporate them as the magnetic component in a strongly magnetic nanocomposite. Nanocomposites are typically formed by the organization of nanoparticles within a polymeric matrix. However, this approach can lead to high organic fractions and phase separation; reducing the performance of the resulting material. Here, we form aminated nanoparticles that are then cross-linked using epoxy chemistry. The result is a magnetic nanoparticle component that is covalently linked and well separated. By using this 'matrix-free' approach, we can substantially increase the magnetic nanoparticle fraction, while still maintaining good separation, leading to a superparamagnetic nanocomposite with strong magnetic properties.

More Details

Finite element modeling of nanoscale-enabled microinductors for power electronics

Journal of Materials Research

Langlois, Eric L.; Monson, Todd M.; Huber, Dale L.; Watt, John D.

This article focuses on the finite element modeling of toroidal microinductors, employing first-of-its-kind nanocomposite magnetic core material and superparamagnetic iron nanoparticles covalently cross-linked in an epoxy network. Energy loss mechanisms in existing inductor core materials are covered as well as discussions on how this novel core material eliminates them providing a path toward realizing these low form factor devices. Designs for both a 2 μH output and a 500 nH input microinductor are created via the model for a high-performance buck converter. Both modeled inductors have 50 wire turns, less than 1 cm3 form factors, less than 1 Ω AC resistance, and quality factors, Q's, of 27 at 1 MHz. In addition, the output microinductor is calculated to have an average output power of 7 W and a power density of 3.9 kW/in3 by modeling with the 1st generation iron nanocomposite core material.

More Details

Formation of Metal Nanoparticles Directly from Bulk Sources Using Ultrasound and Application to E-Waste Upcycling

Small

Watt, John D.; Austin, Mariah J.; Simocko, Chester K.; Pete, Douglas V.; Chavez, Jonathan; Ammerman, Lauren M.; Huber, Dale L.

A method for creating nanoparticles directly from bulk metal by applying ultrasound to the surface in the presence of a two-part surfactant system is presented. Implosive collapse of cavitation bubbles near the bulk metal surface generates powerful microjets, leading to material ejection. This liberated material is captured and stabilized by a surfactant bilayer in the form of nanoparticles. The method is characterized in detail using gold, but is also demonstrated on other metals and alloys, and is generally applicable. It is shown that nanoparticles can be produced regardless of the bulk metal form factor, and the method is extended to an environmentally important problem, the reclamation of gold from an electronic waste stream.

More Details

Magnetic Nanocomposites and Their Incorporation into Higher Order Biosynthetic Functional Architectures

ACS Omega

Watt, John D.; Collins, Aaron M.; Vreeland, Erika C.; Montano, Gabriel A.; Huber, Dale L.

A magnetically active Fe3O4/poly(ethylene oxide)-block-poly(butadiene) (PEO-b-PBD) nanocomposite is formed by the encapsulation of magnetite nanoparticles with a short-chain amphiphilic block copolymer. This material is then incorporated into the self-assembly of higher order polymer architectures, along with an organic pigment, to yield biosynthetic, bifunctional optical and magnetically active Fe3O4/bacteriochlorophyll c/PEO-b-PBD polymeric chlorosomes.

More Details

Magnetically Recoverable Pd/Fe3O4 Core–Shell Nanowire Clusters with Increased Hydrogenation Activity

ChemPlusChem

Watt, John D.; Kotula, Paul G.; Huber, Dale L.

Core–shell nanostructures are promising candidates for the next generation of catalysts due to synergistic effects which can arise from having two active species in close contact, leading to increased activity. Likewise, catalysts displaying added functionality, such as a magnetic response, can have increased scientific and industrial potential. Here, Pd/Fe3O4 core–shell nanowire clusters are synthesized and applied as hydrogenation catalysts for an industrially important hydrogenation reaction: the conversion of acetophenone to 1-phenylethanol. During synthesis, the palladium nanowires self-assemble into clusters which act as a high-surface-area framework for the growth of a magnetic iron oxide shell. This material demonstrates excellent catalytic activity due to the presence of palladium while the strong magnetic properties provided by the iron oxide shell enable facile catalyst recovery.

More Details

Enhanced Nanoparticle Size Control by Extending LaMer's Mechanism

Chemistry of Materials

Vreeland, Erika C.; Watt, John D.; Schober, Gretchen B.; Hance, Bradley G.; Austin, Mariah A.; Price, Andrew D.; Fellows, Benjamin D.; Monson, Todd M.; Hudak, Nicholas S.; Maldonado-Camargo, Lorena; Bohorquez, Ana C.; Rinaldi, Carlos; Huber, Dale L.

The synthesis of well-defined nanoparticle materials has been an area of intense investigation, but size control in nanoparticle syntheses is largely empirical. Here, we introduce a general method for fine size control in the synthesis of nanoparticles by establishing steady state growth conditions through the continuous, controlled addition of precursor, leading to a uniform rate of particle growth. This approach, which we term the "xtended LaMer mechanism" allows for reproducibility in particle size from batch to batch as well as the ability to predict nanoparticle size by monitoring the early stages of growth. We have demonstrated this method by applying it to a challenging synthetic system: magnetite nanoparticles. To facilitate this reaction, we have developed a reproducible method for synthesizing an iron oleate precursor that can be used without purification. We then show how such fine size control affects the performance of magnetite nanoparticles in magnetic hyperthermia.

More Details
23 Results
23 Results