Publications

Results 1–50 of 127
Skip to search filters

The ultrafast pixel array camera system and its applications in high energy density physics

Review of Scientific Instruments

Looker, Quinn M.; Oberla, Eric O.; Stahoviak, John W.; Mostafanezhad, Isar M.; Pang, Ryan P.; Luck, Marcus L.; Galloway, Ben G.; Rambo, Patrick K.; Porter, John L.

Diagnostics in high energy density physics, shock physics, and related fields are primarily driven by a need to record rapidly time-evolving signals in single-shot events. These measurements are often limited by channel count and signal degradation issues on cable links between the detector and digitizer. Here we present the Ultrafast Pixel Array Camera (UPAC), a compact and flexible detector readout system with 32 waveform-recording channels at up to 10 Gsample/s and 1.8 GHz analog bandwidth. The compact footprint allows the UPAC to be directly embedded in the detector environment. A key enabling technology is the PSEC4A chip, an eight-channel switch-capacitor array sampling device with up to 1056 samples/channel. The UPAC system includes a high-density input connector that can plug directly into an application-specific detector board, programmable control, and serial readout, with less than 5 W of power consumption in full operation. We present the UPAC design and characterization, including a measured timing resolution of ~20 ps or better on acquisitions of sub-nanosecond pulses with minimal system calibrations. Example applications of the UPAC are also shown to demonstrate operation of a solid-state streak camera, an ultrafast imaging array, and a neutron time-of-flight spectrometer.

More Details

A study of sacrificial mirrors for use prior to a laser wakefield accelerator driven by the Z-Petawatt laser

Galloway, Benjamin G.; Rambo, Patrick K.; Geissel, Matthias G.; Kimmel, Mark W.; Kellogg, Jeffrey W.; Elle, Jennifer E.; Garrett, Travis G.; Porter, John L.; Rochau, G.A.

Many experiments at Sandia’s Z Pulsed Power Facility require x-ray backlighting diagnostics to understand experiment performance. Due to limitations in present-day source/detection modalities, most x-ray diagnostics at Z are restricted to photon energies <20 keV, ultimately limiting the density, amount, and atomic number of targets diagnosable in experiments. These limitations force the use of low-Z materials like Beryllium, and they prevent acquisition of important backlighting data for materials/densities that are opaque to soft x-rays and where background emission from the Z load and transmission lines overwhelm diagnostics. In this LDRD project, we have investigated the design and development of a laser wakefield acceleration platform driven by the Z-Petawatt laser – a platform that would enable the generation of a pulsed, collimated beam of high energy x-rays up to 100 keV. Geometrical considerations for implementation on the Z Machine require the use of sacrificial mirrors, which have been tested in offline experiments in the Chama target chamber in building 983. Our results suggest the use of sacrificial mirrors would not necessarily inhibit the laser wakefield x-ray process, particularly with the benefits stemming from planned laser upgrades. These conclusions support the continuation of laser wakefield source research and the development of the necessary infrastructure to deliver the Z-Petawatt laser to the Z center section along the appropriate lines of sight. Ultimately, this new capability will provide unprecedented views through dense states of matter, enabling the use of previously incompatible target materials/designs, and uncovering a new set of observables accessible through diffraction and spectroscopy in the hard x-ray regime. These will amplify the data return on precious Z shots and enhance Sandia’s ability to investigate fundamental physics in support of national security.

More Details

An overview of magneto-inertial fusion on the Z machine at Sandia National Laboratories

Nuclear Fusion

Yager-Elorriaga, David A.; Gomez, M.R.; Ruiz, D.E.; Slutz, S.A.; Harvey-Thompson, Adam J.; Jennings, C.A.; Knapp, P.F.; Schmit, P.F.; Weis, M.R.; Awe, T.J.; Chandler, Gordon A.; Mangan, M.; Myers, C.E.; Fein, Jeffrey R.; Galloway, B.R.; Geissel, Matthias G.; Glinsky, Michael E.; Hansen, Stephanie B.; Harding, Eric H.; Lamppa, Derek C.; Lewis, W.E.; Rambo, Patrick K.; Robertson, Grafton K.; Savage, Mark E.; Shipley, Gabriel A.; Smith, I.C.; Schwarz, Jens S.; Ampleford, David A.; Beckwith, Kristian B.; Peterson, Kyle J.; Porter, John L.; Rochau, G.A.; Sinars, D.B.

We present an overview of the magneto-inertial fusion (MIF) concept Magnetized Liner Inertial Fusion (MagLIF) pursued at Sandia National Laboratories and review some of the most prominent results since the initial experiments in 2013. In MagLIF, a centimeter-scale beryllium tube or 'liner' is filled with a fusion fuel, axially pre-magnetized, laser pre-heated, and finally imploded using up to 20 MA from the Z machine. All of these elements are necessary to generate a thermonuclear plasma: laser preheating raises the initial temperature of the fuel, the electrical current implodes the liner and quasi-adiabatically compresses the fuel via the Lorentz force, and the axial magnetic field limits thermal conduction from the hot plasma to the cold liner walls during the implosion. MagLIF is the first MIF concept to demonstrate fusion relevant temperatures, significant fusion production (>1013 primary DD neutron yield), and magnetic trapping of charged fusion particles. On a 60 MA next-generation pulsed-power machine, two-dimensional simulations suggest that MagLIF has the potential to generate multi-MJ yields with significant self-heating, a long-term goal of the US Stockpile Stewardship Program. At currents exceeding 65 MA, the high gains required for fusion energy could be achievable.

More Details

Z-Petawatt Laser Highlights for FY21

Rambo, Patrick K.; Galloway, B.R.; Geissel, Matthias G.; Kimmel, Mark W.; Porter, John L.

We’re happy to report that the full-aperture upgrade project, started in FY18, is now complete and short-pulse target experiments are underway. The table below lists the present performance level of ZPW. Additional laser improvements are in progress to increase the laser energy and pulse contrast along with implementing a correction for achromatic aberrations to reduce the focused spot size and pulse width.

More Details

Investigating the energy balance in MagLIF preheat experiments

Harvey-Thompson, Adam J.; Harvey-Thompson, Adam J.; Geissel, Matthias G.; Crabtree, Jerry A.; Ampleford, David A.; Awe, Thomas J.; Beckwith, Kristian B.; Fein, Jeffrey R.; Gomez, Matthew R.; Hanson, Joseph C.; Jennings, Christopher A.; Kimmel, Mark W.; Maurer, A.; Shores, Jonathon S.; Smith, Ian C.; Speas, Robert J.; Speas, Christopher S.; York, Adam Y.; Porter, John L.; Paguio, Reny P.; Smith, Gary S.

Abstract not provided.

Lasergate: A windowless gas target for enhanced laser preheat in magnetized liner inertial fusion

Physics of Plasmas

Galloway, B.R.; Slutz, S.A.; Kimmel, Mark W.; Rambo, Patrick K.; Schwarz, Jens S.; Geissel, Matthias G.; Harvey-Thompson, Adam J.; Weis, M.R.; Jennings, C.A.; Field, Ella S.; Kletecka, Damon E.; Looker, Q.; Colombo, Anthony P.; Edens, Aaron E.; Smith, Ian C.; Shores, J.E.; Speas, C.S.; Speas, Robert J.; Spann, A.P.; Sin, J.; Gautier, S.; Sauget, V.; Treadwell, P.A.; Rochau, G.A.; Porter, John L.

At the Z Facility at Sandia National Laboratories, the magnetized liner inertial fusion (MagLIF) program aims to study the inertial confinement fusion in deuterium-filled gas cells by implementing a three-step process on the fuel: premagnetization, laser preheat, and Z-pinch compression. In the laser preheat stage, the Z-Beamlet laser focuses through a thin polyimide window to enter the gas cell and heat the fusion fuel. However, it is known that the presence of the few μm thick window reduces the amount of laser energy that enters the gas and causes window material to mix into the fuel. These effects are detrimental to achieving fusion; therefore, a windowless target is desired. The Lasergate concept is designed to accomplish this by "cutting"the window and allowing the interior gas pressure to push the window material out of the beam path just before the heating laser arrives. In this work, we present the proof-of-principle experiments to evaluate a laser-cutting approach to Lasergate and explore the subsequent window and gas dynamics. Further, an experimental comparison of gas preheat with and without Lasergate gives clear indications of an energy deposition advantage using the Lasergate concept, as well as other observed and hypothesized benefits. While Lasergate was conceived with MagLIF in mind, the method is applicable to any laser or diagnostic application requiring direct line of sight to the interior of gas cell targets.

More Details

Lasergate: a windowless gas target for enhanced laser preheat in MagLIF

Galloway, B.R.; Slutz, Stephen A.; Kimmel, Mark W.; Rambo, Patrick K.; Schwarz, Jens S.; Geissel, Matthias G.; Harvey-Thompson, Adam J.; Weis, Matthew R.; Jennings, Christopher A.; Field, Ella S.; Kletecka, Damon E.; Looker, Quinn M.; Colombo, Anthony P.; Edens, Aaron E.; Smith, Ian C.; Shores, Jonathon S.; Speas, Christopher S.; Speas, Robert J.; Spann, Andrew S.; Sin, Justin S.; Gautier, Sophie G.; Sauget, Vincent S.; Treadwell, Paul T.; Rochau, G.A.; Porter, John L.

Abstract not provided.

Increased preheat energy to MagLIF targets with cryogenic cooling

Harvey-Thompson, Adam J.; Geissel, Matthias G.; Crabtree, Jerry A.; Weis, Matthew R.; Gomez, Matthew R.; Fein, Jeffrey R.; Ampleford, David A.; Awe, Thomas J.; Chandler, Gordon A.; Galloway, B.R.; Hansen, Stephanie B.; Hanson, Jeffrey J.; Harding, Eric H.; Jennings, Christopher A.; Kimmel, Mark W.; Knapp, Patrick K.; Lamppa, Derek C.; Lewis, William L.; Mangan, Michael M.; Maurer, A.; Perea, L.; Peterson, Kara J.; Porter, John L.; Rambo, Patrick K.; Robertson, Grafton K.; Rochau, G.A.; Ruiz, Daniel E.; Shores, Jonathon S.; Slutz, Stephen A.; Smith, Ian C.; Speas, Christopher S.; Yager-Elorriaga, David A.; York, Adam Y.; Paguio, R.R.; Smith, G.E.

Abstract not provided.

Detector thickness effects on nanosecond-gated imager response

Review of Scientific Instruments

Looker, Quinn M.; Colombo, Anthony P.; Porter, John L.

Hybrid CMOS multi-frame imagers with exposure times down to ∼2 ns have made significant impacts in high energy density physics and inertial confinement fusion research. The detector thickness is a key parameter in both detector quantum efficiency and temporal response. The Icarus hybrid CMOS imager has been fabricated with Si detector thicknesses of 8, 25, and 100 μm. The temporal response of imaging sensors with exposure time down to 2 ns has been examined and compared to directly measured photodiode current. The 100-μm thick variant displays extended features related to charge carrier collection and is more susceptible to field collapse. We also demonstrate charge collection time effects on spatial response.

More Details

An overview of magneto-inertial fusion on the Z Machine at Sandia National Laboratories

Yager-Elorriaga, David A.; Gomez, Matthew R.; Ruiz, Daniel E.; Slutz, Stephen A.; Harvey-Thompson, Adam J.; Jennings, Christopher A.; Weis, Matthew R.; Awe, Thomas J.; Chandler, Gordon A.; Myers, Clayton E.; Fein, Jeffrey R.; Geissel, Matthias G.; Glinsky, Michael E.; Hansen, Stephanie B.; Harding, Eric H.; Lamppa, Derek C.; Lewis, William L.; Robertson, Grafton K.; Savage, Mark E.; Ampleford, David A.; Beckwith, Kristian B.; Peterson, Kyle J.; Porter, John L.; Rochau, G.A.

Abstract not provided.

An overview of magneto-inertial fusion on the Z Machine at Sandia National Laboratories

Yager-Elorriaga, David A.; Gomez, Matthew R.; Ruiz, Daniel E.; Slutz, Stephen A.; Harvey-Thompson, Adam J.; Jennings, Christopher A.; Knapp, Patrick K.; Schmit, Paul S.; Weis, Matthew R.; Awe, Thomas J.; Chandler, Gordon A.; Mangan, Michael M.; Myers, Clayton E.; Fein, Jeffrey R.; Geissel, Matthias G.; Glinsky, Michael E.; Hansen, Stephanie B.; Harding, Eric H.; Lamppa, Derek C.; Webster, Evelyn L.; Rambo, Patrick K.; Robertson, Grafton K.; Savage, Mark E.; Smith, Ian C.; Ampleford, David A.; Beckwith, Kristian B.; Peterson, Kara J.; Porter, John L.; Rochau, G.A.; Sinars, Daniel S.

Abstract not provided.

IMPROVED PERFORMANCE OF MAGNETIZED LINER INERTIAL FUSION EXPERIMENTS WITH HIGH-ENERGY LOW-MIX LASER PREHEAT CONFIGURATIONS

Harvey-Thompson, Adam J.; Geissel, Matthias G.; Weis, Matthew R.; Jennings, Christopher A.; Gomez, Matthew R.; Fein, Jeffrey R.; Ampleford, David A.; Bliss, David E.; Chandler, Gordon A.; Glinsky, Michael E.; Hahn, Kelly D.; Hansen, Stephanie B.; Hanson, Joseph C.; Harding, Eric H.; Knapp, Patrick K.; Mangan, Michael M.; Perea, L.; Peterson, Kyle J.; Porter, John L.; Rambo, Patrick K.; Robertson, Grafton K.; Rochau, G.A.; Ruiz, Carlos L.; Schwarz, Jens S.; Shores, Jonathon S.; Sinars, Daniel S.; Slutz, Stephen A.; Smith, Ian C.; Speas, Christopher S.; Whittemore, K.; Paguio, Reny P.; Smith, Gary L.; York, Adam Y.

Abstract not provided.

Performance Scaling in Magnetized Liner Inertial Fusion Experiments

Physical Review Letters

Gomez, Matthew R.; Slutz, S.A.; Jennings, C.A.; Ampleford, David A.; Weis, M.R.; Myers, C.E.; Yager-Elorriaga, David A.; Hahn, K.D.; Hansen, Stephanie B.; Harding, Eric H.; Harvey-Thompson, Adam J.; Lamppa, Derek C.; Mangan, M.; Knapp, P.F.; Awe, T.J.; Chandler, Gordon A.; Cooper, Gary W.; Fein, Jeffrey R.; Geissel, Matthias G.; Glinsky, Michael E.; Lewis, W.E.; Ruiz, C.L.; Ruiz, D.E.; Savage, Mark E.; Schmit, Paul S.; Smith, Ian C.; Styron, J.D.; Porter, John L.; Jones, Brent M.; Mattsson, Thomas M.; Peterson, Kyle J.; Rochau, G.A.; Sinars, Daniel S.

We present experimental results from the first systematic study of performance scaling with drive parameters for a magnetoinertial fusion concept. In magnetized liner inertial fusion experiments, the burn-averaged ion temperature doubles to 3.1 keV and the primary deuterium-deuterium neutron yield increases by more than an order of magnitude to 1.1×1013 (2 kJ deuterium-tritium equivalent) through a simultaneous increase in the applied magnetic field (from 10.4 to 15.9 T), laser preheat energy (from 0.46 to 1.2 kJ), and current coupling (from 16 to 20 MA). Individual parametric scans of the initial magnetic field and laser preheat energy show the expected trends, demonstrating the importance of magnetic insulation and the impact of the Nernst effect for this concept. A drive-current scan shows that present experiments operate close to the point where implosion stability is a limiting factor in performance, demonstrating the need to raise fuel pressure as drive current is increased. Simulations that capture these experimental trends indicate that another order of magnitude increase in yield on the Z facility is possible with additional increases of input parameters.

More Details

Synchrotron characterization of high-Z, current-mode X-ray detectors

Review of Scientific Instruments

Looker, Quinn M.; Wood, Michael G.; Miceli, Antonino; Niraula, Madan; Yasuda, Kazuhito; Porter, John L.

Fast X-ray detectors are critical tools in pulsed power and fusion applications, where detector impulse response of a nanosecond or better is often required. Semiconductor detectors can create fast, sensitive devices with extensive operational flexibility. There is typically a trade-off between detector sensitivity and speed, but higher atomic number absorbers can increase hard X-ray absorption without increasing the charge collection time, provided carriers achieve high velocity. This paper presents X-ray pulse characterization conducted at the Advanced Photon Source of X-ray absorption efficiency and temporal impulse response of current-mode semiconductor X-ray detectors composed of Si, GaAs, and CdTe.

More Details

The Impact on Mix of Different Preheat Protocols

Harvey-Thompson, Adam J.; Geissel, Matthias G.; Jennings, Christopher A.; Weis, Matthew R.; Ampleford, David A.; Bliss, David E.; Chandler, Gordon A.; Fein, Jeffrey R.; Galloway, B.R.; Glinsky, Michael E.; Gomez, Matthew R.; Hahn, K.D.; Hansen, Stephanie B.; Harding, Eric H.; Kimmel, Mark W.; Knapp, Patrick K.; Perea, L.; Peterson, Kara J.; Porter, John L.; Rambo, Patrick K.; Robertson, Grafton K.; Rochau, G.A.; Ruiz, Daniel E.; Schwarz, Jens S.; Shores, Jonathon S.; Sinars, Daniel S.; Slutz, Stephen A.; Smith, Ian C.; Speas, Christopher S.; Whittemore, K.; Woodbury, Daniel W.; Smith, G.E.

Abstract not provided.

Progress in Implementing High-Energy Low-Mix Laser Preheat for MagLIF

Harvey-Thompson, Adam J.; Harvey-Thompson, Adam J.; Geissel, Matthias G.; Geissel, Matthias G.; Jennings, Christopher A.; Jennings, Christopher A.; Weis, Matthew R.; Weis, Matthew R.; Ampleford, David A.; Ampleford, David A.; Bliss, David E.; Bliss, David E.; Chandler, Gordon A.; Chandler, Gordon A.; Fein, Jeffrey R.; Fein, Jeffrey R.; Galloway, B.R.; Galloway, B.R.; Glinsky, Michael E.; Glinsky, Michael E.; Gomez, Matthew R.; Gomez, Matthew R.; Hahn, K.D.; Hahn, K.D.; Hansen, Stephanie B.; Hansen, Stephanie B.; Harding, Eric H.; Harding, Eric H.; Kimmel, Mark W.; Kimmel, Mark W.; Knapp, Patrick K.; Knapp, Patrick K.; Perea, L.; Perea, L.; Peterson, Kara J.; Peterson, Kara J.; Porter, John L.; Porter, John L.; Rambo, Patrick K.; Rambo, Patrick K.; Robertson, Grafton K.; Robertson, Grafton K.; Rochau, G.A.; Rochau, G.A.; Ruiz, Daniel E.; Ruiz, Daniel E.; Schwarz, Jens S.; Schwarz, Jens S.; Shores, Jonathon S.; Shores, Jonathon S.; Sinars, Daniel S.; Sinars, Daniel S.; Slutz, Stephen A.; Slutz, Stephen A.; Smith, Ian C.; Smith, Ian C.; Speas, Christopher S.; Speas, Christopher S.; Whittemore, K.; Whittemore, K.; Woodbury, Daniel W.; Woodbury, Daniel W.; Smith, G.E.; Smith, G.E.

Abstract not provided.

Constraining preheat energy deposition in MagLIF experiments with multi-frame shadowgraphy

Physics of Plasmas

Harvey-Thompson, Adam J.; Geissel, Matthias G.; Jennings, C.A.; Weis, M.R.; Gomez, M.R.; Fein, Jeffrey R.; Ampleford, David A.; Chandler, Gordon A.; Glinsky, Michael E.; Hahn, K.D.; Hansen, Stephanie B.; Harding, Eric H.; Knapp, P.F.; Paguio, R.R.; Perea, L.; Peterson, Kyle J.; Porter, John L.; Rambo, Patrick K.; Robertson, Grafton K.; Rochau, G.A.; Ruiz, C.L.; Schwarz, Jens S.; Shores, J.E.; Sinars, Daniel S.; Slutz, S.A.; Smith, Ian C.; Smith, Ian C.; Speas, C.S.; Whittemore, K.; Woodbury, D.

A multi-frame shadowgraphy diagnostic has been developed and applied to laser preheat experiments relevant to the Magnetized Liner Inertial Fusion (MagLIF) concept. The diagnostic views the plasma created by laser preheat in MagLIF-relevant gas cells immediately after the laser deposits energy as well as the resulting blast wave evolution later in time. The expansion of the blast wave is modeled with 1D radiation-hydrodynamic simulations that relate the boundary of the blast wave at a given time to the energy deposited into the fuel. This technique is applied to four different preheat protocols that have been used in integrated MagLIF experiments to infer the amount of energy deposited by the laser into the fuel. The results of the integrated MagLIF experiments are compared with those of two-dimensional LASNEX simulations. The best performing shots returned neutron yields ∼40-55% of the simulated predictions for three different preheat protocols.

More Details

Designing And Testing New MagLIF Preheat Protocols

Harvey-Thompson, Adam J.; Geissel, Matthias G.; Weis, Matthew R.; Jennings, Christopher A.; Glinsky, Michael E.; Peterson, Kyle J.; Awe, Thomas J.; Bliss, David E.; Gomez, Matthew R.; Harding, Eric H.; Hansen, Stephanie B.; Kimmel, Mark W.; Knapp, Patrick K.; Lewis, Sean M.; Porter, John L.; Rambo, Patrick K.; Rochau, G.A.; Schollmeier, Marius; Schwarz, Jens S.; Shores, Jonathon S.; Slutz, Stephen A.; Sinars, Daniel S.; Smith, Ian C.; Speas, Christopher S.

Abstract not provided.

MagLIF laser preheat update

Harvey-Thompson, Adam J.; Geissel, Matthias G.; Weis, Matthew R.; Jennings, Christopher A.; Glinsky, Michael E.; Peterson, Kyle J.; Awe, Thomas J.; Bliss, David E.; Gomez, Matthew R.; Harding, Eric H.; Hansen, Stephanie B.; Kimmel, Mark W.; Knapp, Patrick K.; Lewis, Sean M.; Schollmeier, Marius; Schwarz, Jens S.; Sefkow, Adam B.; Shores, Jonathon S.; Slutz, Stephen A.; Sinars, Daniel S.; Smith, Ian C.; Speas, Christopher S.; Wei, M.S.; Vesey, Roger A.; Porter, John L.

Abstract not provided.

Designing and testing new preheat protocols for MagLIF

Harvey-Thompson, Adam J.; Geissel, Matthias G.; Weis, Matthew R.; Peterson, Kyle J.; Glinsky, Michael E.; Awe, Thomas J.; Bliss, David E.; Gomez, Matthew R.; Harding, Eric H.; Hansen, Stephanie B.; Kimmel, Mark W.; Knapp, Patrick K.; Lewis, Sean M.; Porter, John L.; Rochau, G.A.; Schollmeier, Marius; Schwarz, Jens S.; Shores, Jonathon S.; Slutz, Stephen A.; Sinars, Daniel S.; Smith, Ian C.; Speas, Christopher S.

Abstract not provided.

100 GW linear transformer driver cavity: Design, simulations, and performance

Physical Review Accelerators and Beams

Douglass, Jonathan D.; Hutsel, Brian T.; Leckbee, Joshua L.; Mulville, Thomas D.; Stoltzfus, Brian S.; Savage, Mark E.; Breden, E.W.; Calhoun, Jacob D.; Cuneo, M.E.; De Smet, Dennis J.; Hohlfelder, Robert J.; Jaramillo, Deanna M.; Johns, Owen J.; Lombrozo, Aaron C.; Lucero, Diego J.; Moore, James M.; Porter, John L.; Radovich, S.; Sceiford, Matthew S.; Sullivan, Michael A.; Walker, Charles A.; Yazzie, Nicole T.

Here we present details of the design, simulation, and performance of a 100-GW linear transformer driver (LTD) cavity at Sandia National Laboratories. The cavity consists of 20 “bricks.” Each brick is comprised of two 80 nF, 100 kV capacitors connected electrically in series with a custom, 200 kV, three-electrode, field-distortion gas switch. The brick capacitors are bipolar charged to ±100 kV for a total switch voltage of 200 kV. Typical brick circuit parameters are 40 nF capacitance (two 80 nF capacitors in series) and 160 nH inductance. The switch electrodes are fabricated from a WCu alloy and are operated with breathable air. Over the course of 6,556 shots the cavity generated a peak electrical current and power of 1.03 MA (±1.8%) and 106 GW (±3.1%). Experimental results are consistent (to within uncertainties) with circuit simulations for normal operation, and expected failure modes including prefire and late-fire events. New features of this development that are reported here in detail include: (1) 100 ns, 1 MA, 100-GW output from a 2.2 m diameter LTD into a 0.1 Ω load, (2) high-impedance solid charging resistors that are optimized for this application, and (3) evaluation of maintenance-free trigger circuits using capacitive coupling and inductive isolation.

More Details

Diagnosing and mitigating laser preheat induced mix in MagLIF

Physics of Plasmas

Harvey-Thompson, Adam J.; Weis, M.R.; Harding, Eric H.; Geissel, Matthias G.; Ampleford, David A.; Chandler, Gordon A.; Fein, Jeffrey R.; Glinsky, Michael E.; Gomez, Matthew R.; Hahn, K.D.; Hansen, Stephanie B.; Jennings, C.A.; Knapp, P.F.; Paguio, R.R.; Perea, L.; Peterson, Kyle J.; Porter, John L.; Rambo, Patrick K.; Robertson, Grafton K.; Rochau, G.A.; Ruiz, D.E.; Schwarz, Jens S.; Shores, J.E.; Sinars, Daniel S.; Slutz, S.A.; Smith, G.E.; Smith, Ian C.; Speas, C.S.; Whittemore, K.

A series of Magnetized Liner Inertial Fusion (MagLIF) experiments have been conducted in order to investigate the mix introduced from various target surfaces during the laser preheat stage. The material mixing was measured spectroscopically for a variety of preheat protocols by employing mid-atomic number surface coatings applied to different regions of the MagLIF target. The data show that the material from the top cushion region of the target can be mixed into the fuel during preheat. For some preheat protocols, our experiments show that the laser-entrance-hole (LEH) foil used to contain the fuel can be transported into the fuel a significant fraction of the stagnation length and degrade the target performance. Preheat protocols using pulse shapes of a few-ns duration result in the observable LEH foil mix both with and without phase-plate beam smoothing. In order to reduce this material mixing, a new capability was developed to allow for a low energy (∼20 J) laser pre-pulse to be delivered early in time (-20 ns) before the main laser pulse (∼1.5 kJ). In experiments, this preheat protocol showed no indications of the LEH foil mix. The experimental results are broadly in agreement with pre-shot two-dimensional HYDRA simulations that helped motivate the development of the early pre-pulse capability.

More Details

Enhancing performance of magnetized liner inertial fusion at the Z facility

Physics of Plasmas

Slutz, S.A.; Gomez, Matthew R.; Hansen, Stephanie B.; Harding, Eric H.; Hutsel, Brian T.; Knapp, P.F.; Lamppa, Derek C.; Awe, T.J.; Ampleford, David A.; Bliss, David E.; Chandler, Gordon A.; Cuneo, M.E.; Geissel, Matthias G.; Glinsky, Michael E.; Harvey-Thompson, Adam J.; Hess, Mark H.; Jennings, C.A.; Jones, Brent M.; Laity, G.R.; Martin, M.R.; Peterson, Kyle J.; Porter, John L.; Rambo, Patrick K.; Rochau, G.A.; Ruiz, Carlos L.; Savage, Mark E.; Schwarz, Jens S.; Schmit, Paul S.; Shipley, Gabriel A.; Sinars, Daniel S.; Smith, Ian C.; Vesey, Roger A.; Weis, M.R.

The Magnetized Liner Inertial Fusion concept (MagLIF) [Slutz et al., Phys. Plasmas 17, 056303 (2010)] is being studied on the Z facility at Sandia National Laboratories. Neutron yields greater than 1012 have been achieved with a drive current in the range of 17-18 MA and pure deuterium fuel [Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)]. We show that 2D simulated yields are about twice the best yields obtained on Z and that a likely cause of this difference is the mix of material into the fuel. Mitigation strategies are presented. Previous numerical studies indicate that much larger yields (10-1000 MJ) should be possible with pulsed power machines producing larger drive currents (45-60 MA) than can be produced by the Z machine [Slutz et al., Phys. Plasmas 23, 022702 (2016)]. To test the accuracy of these 2D simulations, we present modifications to MagLIF experiments using the existing Z facility, for which 2D simulations predict a 100-fold enhancement of MagLIF fusion yields and considerable increases in burn temperatures. Experimental verification of these predictions would increase the credibility of predictions at higher drive currents.

More Details

Polycapillary x-ray lenses for single-shot, laser-driven powder diffraction

Review of Scientific Instruments

Schollmeier, Marius; Ao, Tommy A.; Field, Ella S.; Galloway, B.R.; Kalita, Patricia K.; Kimmel, Mark W.; Morgan, D.V.; Rambo, Patrick K.; Schwarz, Jens S.; Shores, J.E.; Smith, Ian C.; Speas, C.S.; Benage, John F.; Porter, John L.

X-ray diffraction measurements to characterize phase transitions of dynamically compressed high-Z matter at Mbar pressures require both sufficient photon energy and fluence to create data with high fidelity in a single shot. Large-scale laser systems can be used to generate x-ray sources above 10 keV utilizing line radiation of mid-Z elements. However, the laser-to-x-ray energy conversion efficiency at these energies is low, and thermal x-rays or hot electrons result in unwanted background. We employ polycapillary x-ray lenses in powder x-ray diffraction measurements using solid target x-ray emission from either the Z-Beamlet long-pulse or the Z-Petawatt (ZPW) short-pulse laser systems at Sandia National Laboratories. Polycapillary lenses allow for a 100-fold fluence increase compared to a conventional pinhole aperture while simultaneously reducing the background significantly. This enables diffraction measurements up to 16 keV at the few-photon signal level as well as diffraction experiments with ZPW at full intensity.

More Details

Phase modulation failsafe system for multi-kJ lasers based on optical heterodyne detection

Review of Scientific Instruments

Armstrong, Darrell J.; Looker, Quinn M.; Stahoviak, John W.; Smith, Ian C.; Shores, J.E.; Rambo, Patrick K.; Schwarz, Jens S.; Speas, C.S.; Porter, John L.

Amplification of the transverse scattered component of stimulated Brillouin scattering (SBS) can contribute to optical damage in the large aperture optics of multi-kJ lasers. Because increased laser bandwidth from optical phase modulation (PM) can suppress SBS, high energy laser amplifiers are injected with PM light. Phase modulation distributes the single-frequency spectrum of a master oscillator laser among individual PM sidebands, so a sufficiently high modulation index β can maintain the fluence for all spectral components below the SBS threshold. To avoid injection of single frequency light in the event of a PM failure, a high-speed PM failsafe system (PMFS) must be employed. Because PM is easily converted to AM, essentially all PM failsafes detect AM, with the one described here employing a novel configuration where optical heterodyne detection converts PM to AM, followed by passive AM power detection. Although the PMFS is currently configured for continuous monitoring, it can also detect PM for pulse durations ≥2 ns and could be modified to accommodate shorter pulses. This PMFS was deployed on the Z-Beamlet Laser (ZBL) at Sandia National Laboratories, as required by an energy upgrade to support programs at Sandia's Z Facility such as magnetized liner inertial fusion. Depending on the origin of a PM failure, the PMFS responds in as little as 7 ns. In the event of an instantaneous failure during initiation of a laser shot, this response time translates to a 30-50 ns margin of safety by blocking a pulse from leaving ZBL's regenerative amplifier, which prevents injection of single frequency light into the main amplification chain. The performance of the PMFS, without the need for operator interaction, conforms to the principles of engineered safety.

More Details
Results 1–50 of 127
Results 1–50 of 127