Additive manufactured Ti-5Al-5V-5Mo-3Cr (Ti-5553) is being considered as an AM repair material for engineering applications because of its superior strength properties compared to other titanium alloys. Here, we describe the failure mechanisms observed through computed tomography, electron backscatter diffraction (EBSD), and scanning electron microscopy (SEM) of spall damage as a result of tensile failure in as-built and annealed Ti-5553. We also investigate the phase stability in native powder, as-built and annealed Ti-5553 through diamond anvil cell (DAC) and ramp compression experiments. We then explore the effect of tensile loading on a sample containing an interface between a Ti-6Al-V4 (Ti-64) baseplate and additively manufactured Ti-5553 layer. Post-mortem materials characterization showed spallation occurred in regions of initial porosity and the interface provides a nucleation site for spall damage below the spall strength of Ti-5553. Preliminary peridynamics modeling of the dynamic experiments is described. Finally, we discuss further development of Stochastic Parallel PARticle Kinteic Simulator (SPPARKS) Monte Carlo (MC) capabilities to include the integration of alpha (α)-phase and microstructural simulations for this multiphase titanium alloy.
Laser powder bed fusion (LPBF) additive manufacturing (AM) offers a variety of advantages over traditional manufacturing, however its usefulness for manufacturing of high-performance components is currently hampered by internal defects (porosity) created during the LPBF process that have an unknown impact on global mechanical performance. By inducing porosity distributions through variations in print energy density and inspecting the resulting tensile samples using computed tomography, nearly 50,000 pores across 75 samples were identified. Porosity characteristics were quantitatively extracted from inspection data and compared with mechanical properties to understand the strength of relationships between porosity and global tensile performance. Useful porosity characteristics were identified for prediction of part performance. Results indicate that ductility and strain at ultimate tensile strength are the global tensile properties most significantly impacted by porosity and can be predicted with reasonable accuracy using simple porosity shape descriptors such as volume, diameter, and surface area. Moreover, it was found that the largest pores influenced behavior most significantly. Specifically, pores in excess of 125 µm in diameter were found to be a sufficient threshold for property estimation. These results establish an initial understanding of the complex defect-performance relationship in AM 316L stainless steel and can be leveraged to develop certification standards and improve confidence in part quality and reliability for the broader set of engineering alloys.
Architected structural metamaterials, also known as lattice, truss, or acoustic materials, provide opportunities to produce tailored effective properties that are not achievable in bulk monolithic materials. These topologies are typically designed under the assumption of uniform, isotropic base material properties taken from reference databases and without consideration for sub-optimal as-printed properties or off-nominal dimensional heterogeneities. However, manufacturing imperfections such as surface roughness are present throughout the lattices and their constituent struts create significant variability in mechanical properties and part performance. This study utilized a customized tensile bar with a gauge section consisting of five parallel struts loaded in a stretch (tensile) orientation to examine the impact of manufacturing heterogeneities on quasi-static deformation of the struts, with a focus on ultimate tensile strength and ductility. The customized tensile specimen was designed to prevent damage during handling, despite the sub-millimeter thickness of each strut, and to enable efficient, high-throughput mechanical testing. The strut tensile specimens and reference monolithic tensile bars were manufactured using a direct metal laser sintering (also known as laser powder bed fusion or selective laser melting) process in a precipitation hardened stainless steel alloy, 17-4PH, with minimum feature sizes ranging from 0.5-0.82 mm, comparable to minimum allowable dimensions for the process. Over 70 tensile stress-strain tests were performed revealing that the effective mechanical properties of the struts were highly stochastic, considerably inferior to the properties of larger as-printed reference tensile bars, and well below the minimum allowable values for the alloy. Pre- and post-test non-destructive analyses revealed that the primary source of the reduced properties and increased variability was attributable to heterogeneous surface topography with stress-concentrating contours and commensurate reduction in effective load-bearing area.
Measures of energy input and spatial energy distribution during laser powder bed fusion additive manufacturing have significant implications for the build quality of parts, specifically relating to formation of internal defects during processing. In this study, scanning electron microscopy was leveraged to investigate the effects of these distributions on the mechanical performance of parts manufactured using laser powder bed fusion as seen through the fracture surfaces resulting from uniaxial tensile testing. Variation in spatial energy density is shown to manifest in differences in defect morphology and mechanical properties. Computed tomography and scanning electron microscopy inspections revealed significant evidence of porosity acting as failure mechanisms in printed parts. These results establish an improved understanding of the effects of spatial energy distributions in laser powder bed fusion on mechanical performance.