This project created and demonstrated a framework for the efficient and accurate prediction of complex systems with only a limited amount of highly trusted data. These next generation computational multi-fidelity tools fuse multiple information sources of varying cost and accuracy to reduce the computational and experimental resources needed for designing and assessing complex multi-physics/scale/component systems. These tools have already been used to substantially improve the computational efficiency of simulation aided modeling activities from assessing thermal battery performance to predicting material deformation. This report summarizes the work carried out during a two year LDRD project. Specifically we present our technical accomplishments; project outputs such as publications, presentations and professional leadership activities; and the project’s legacy.
For decades, Arctic temperatures have increased twice as fast as average global temperatures. As a first step towards quantifying parametric uncertainty in Arctic climate, we performed a variance-based global sensitivity analysis (GSA) using a fully-coupled, ultra-low resolution (ULR) configuration of version 1 of the U.S. Department of Energy’s Energy Exascale Earth System Model (E3SMv1). Specifically, we quantified the sensitivity of six quantities of interest (QOIs), which characterize changes in Arctic climate over a 75 year period, to uncertainties in nine model parameters spanning the sea ice, atmosphere and ocean components of E3SMv1. Sensitivity indices for each QOI were computed with a Gaussian process emulator using 139 random realizations of the random parameters and fixed pre-industrial forcing. Uncertainties in the atmospheric parameters in the CLUBB (Cloud Layers Unified by Binormals) scheme were found to have the most impact on sea ice status and the larger Arctic climate. Our results demonstrate the importance of conducting sensitivity analyses with fully coupled climate models. The ULR configuration makes such studies computationally feasible today due to its low computational cost. When advances in computational power and modeling algorithms enable the tractable use of higher-resolution models, our results will provide a baseline that can quantify the impact of model resolution on the accuracy of sensitivity indices. Moreover, the confidence intervals provided by our study, which we used to quantify the impact of the number of model evaluations on the accuracy of sensitivity estimates, have the potential to inform the computational resources needed for future sensitivity studies.
PyApprox is a Python-based one-stop-shop for probabilistic analysis of scientific numerical models. Easy to use and extendable tools are provided for constructing surrogates, sensitivity analysis, Bayesian inference, experimental design, and forward uncertainty quantification. The algorithms implemented represent the most popular methods for model analysis developed over the past two decades, including recent advances in multi-fidelity approaches that use multiple model discretizations and/or simplified physics to significantly reduce the computational cost of various types of analyses. Simple interfaces are provided for the most commonly-used algorithms to limit a user’s need to tune the various hyper-parameters of each algorithm. However, more advanced work flows that require customization of hyper-parameters is also supported. An extensive set of Benchmarks from the literature is also provided to facilitate the easy comparison of different algorithms for a wide range of model analyses. This paper introduces PyApprox and its various features, and presents results demonstrating the utility of PyApprox on a benchmark problem modeling the advection of a tracer in ground water.
We present an adaptive algorithm for constructing surrogate models of multi-disciplinary systems composed of a set of coupled components. With this goal we introduce “coupling” variables with a priori unknown distributions that allow surrogates of each component to be built independently. Once built, the surrogates of the components are combined to form an integrated-surrogate that can be used to predict system-level quantities of interest at a fraction of the cost of the original model. The error in the integrated-surrogate is greedily minimized using an experimental design procedure that allocates the amount of training data, used to construct each component-surrogate, based on the contribution of those surrogates to the error of the integrated-surrogate. The multi-fidelity procedure presented is a generalization of multi-index stochastic collocation that can leverage ensembles of models of varying cost and accuracy, for one or more components, to reduce the computational cost of constructing the integrated-surrogate. Extensive numerical results demonstrate that, for a fixed computational budget, our algorithm is able to produce surrogates that are orders of magnitude more accurate than methods that treat the integrated system as a black-box.
We present a surrogate modeling framework for conservatively estimating measures of risk from limited realizations of an expensive physical experiment or computational simulation. Risk measures combine objective probabilities with the subjective values of a decision maker to quantify anticipated outcomes. Given a set of samples, we construct a surrogate model that produces estimates of risk measures that are always greater than their empirical approximations obtained from the training data. These surrogate models limit over-confidence in reliability and safety assessments and produce estimates of risk measures that converge much faster to the true value than purely sample-based estimates. We first detail the construction of conservative surrogate models that can be tailored to a stakeholder's risk preferences and then present an approach, based on stochastic orders, for constructing surrogate models that are conservative with respect to families of risk measures. Our surrogate models include biases that permit them to conservatively estimate the target risk measures. We provide theoretical results that show that these biases decay at the same rate as the L2 error in the surrogate model. Numerical demonstrations confirm that risk-adapted surrogate models do indeed overestimate the target risk measures while converging at the expected rate.
Wang, Qian; Guillaume, Joseph H.A.; Jakeman, John D.; Yang, Tao; Iwanaga, Takuya; Croke, Barry; Jakeman, Anthony J.
Despite widespread use of factor fixing in environmental modeling, its effect on model predictions has received little attention and is instead commonly presumed to be negligible. We propose a proof-of-concept adaptive method for systematically investigating the impact of factor fixing. The method uses Global Sensitivity Analysis methods to identify groups of sensitive parameters, then quantifies which groups can be safely fixed at nominal values without exceeding a maximum acceptable error, demonstrated using the 21-dimensional Sobol’ G-function. Three error measures are considered for quantities of interest, namely Relative Mean Absolute Error, Pearson Product-Moment Correlation and Relative Variance. Results demonstrate that factor fixing may cause large errors in the model results unexpectedly, when preliminary analysis suggests otherwise, and that the default value selected affects the number of factors to fix. To improve the applicability and methodological development of factor fixing, a new research agenda encompassing five opportunities is discussed for further attention.
This paper describes an efficient reverse-mode differentiation algorithm for contraction operations for arbitrary and unconventional tensor network topologies. The approach leverages the tensor contraction tree of Evenbly and Pfeifer (2014), which provides an instruction set for the contraction sequence of a network. We show that this tree can be efficiently leveraged for differentiation of a full tensor network contraction using a recursive scheme that exploits (1) the bilinear property of contraction and (2) the property that trees have a single path from root to leaves. While differentiation of tensor-tensor contraction is already possible in most automatic differentiation packages, we show that exploiting these two additional properties in the specific context of contraction sequences can improve eficiency. Following a description of the algorithm and computational complexity analysis, we investigate its utility for gradient-based supervised learning for low-rank function recovery and for fitting real-world unstructured datasets. We demonstrate improved performance over alternating least-squares optimization approaches and the capability to handle heterogeneous and arbitrary tensor network formats. When compared to alternating minimization algorithms, we find that the gradient-based approach requires a smaller oversampling ratio (number of samples compared to number model parameters) for recovery. This increased efficiency extends to fitting unstructured data of varying dimensionality and when employing a variety of tensor network formats. Here, we show improved learning using the hierarchical Tucker method over the tensor-train in high-dimensional settings on a number of benchmark problems.
Constructing accurate statistical models of critical system responses typically requires an enormous amount of data from physical experiments or numerical simulations. Unfortunately, data generation is often expensive and time consuming. To streamline the data generation process, optimal experimental design determines the 'best' allocation of experiments with respect to a criterion that measures the ability to estimate some important aspect of an assumed statistical model. While optimal design has a vast literature, few researchers have developed design paradigms targeting tail statistics, such as quantiles. In this project, we tailored and extended traditional design paradigms to target distribution tails. Our approach included (i) the development of new optimality criteria to shape the distribution of prediction variances, (ii) the development of novel risk-adapted surrogate models that provably overestimate certain statistics including the probability of exceeding a threshold, and (iii) the asymptotic analysis of regression approaches that target tail statistics such as superquantile regression. To accompany our theoretical contributions, we released implementations of our methods for surrogate modeling and design of experiments in two complementary open source software packages, the ROL/OED Toolkit and PyApprox.
We present an adaptive algorithm for constructing surrogate models for integrated systems composed of a set of coupled components. With this goal we introduce ‘coupling’ variables with a priori unknown distributions that allow approximations of each component to be built independently. Once built, the surrogates of the components are combined and used to predict system-level quantities of interest (QoI) at a fraction of the cost of interrogating the full system model. We use a greedy experimental design procedure, based upon a modification of Multi-Index Stochastic Collocation (MISC), to minimize the error of the combined surrogate. This is achieved by refining each component surrogate in accordance with its relative contribution to error in the approximation of the system-level QoI. Our adaptation of MISC is a multi-fidelity procedure that can leverage ensembles of models of varying cost and accuracy, for one or more components, to produce estimates of system-level QoI. Several numerical examples demonstrate the efficacy of the proposed approach on systems involving feed-forward and feedback coupling. For a fixed computational budget, the proposed algorithm is able to produce approximations that are orders of magnitude more accurate than approximations that treat the integrated system as a black-box.
We present a surrogate modeling framework for conservatively estimating measures of risk from limited realizations of an expensive physical experiment or computational simulation. We adopt a probabilistic description of risk that assigns probabilities to consequences associated with an event and use risk measures, which combine objective evidence with the subjective values of decision makers, to quantify anticipated outcomes. Given a set of samples, we construct a surrogate model that produces estimates of risk measures that are always greater than their empirical estimates obtained from the training data. These surrogate models not only limit over-confidence in reliability and safety assessments, but produce estimates of risk measures that converge much faster to the true value than purely sample-based estimates. We first detail the construction of conservative surrogate models that can be tailored to the specific risk preferences of the stakeholder and then present an approach, based upon stochastic orders, for constructing surrogate models that are conservative with respect to families of risk measures. The surrogate models introduce a bias that allows them to conservatively estimate the target risk measures. We provide theoretical results that show that this bias decays at the same rate as the L2 error in the surrogate model. Our numerical examples confirm that risk-aware surrogate models do indeed over-estimate the target risk measures while converging at the expected rate.
We present a numerical framework for recovering unknown nonautonomous dynamical systems with time-dependent inputs. To circumvent the difficulty presented by the nonautonomous nature of the system, our method transforms the solution state into piecewise integration of the system over a discrete set of time instances. The time-dependent inputs are then locally parameterized by using a proper model, for example, polynomial regression, in the pieces determined by the time instances. This transforms the original system into a piecewise parametric system that is locally time invariant. We then design a deep neural network structure to learn the local models. Once the network model is constructed, it can be iteratively used over time to conduct global system prediction. We provide theoretical analysis of our algorithm and present a number of numerical examples to demonstrate the effectiveness of the method.
Gaussian processes and other kernel-based methods are used extensively to construct approximations of multivariate data sets. The accuracy of these approximations is dependent on the data used. This paper presents a computationally efficient algorithm to greedily select training samples that minimize the weighted Lp error of kernel-based approximations for a given number of data. The method successively generates nested samples, with the goal of minimizing the error in high probability regions of densities specified by users. The algorithm presented is extremely simple and can be implemented using existing pivoted Cholesky factorization methods. Training samples are generated in batches which allows training data to be evaluated (labeled) in parallel. For smooth kernels, the algorithm performs comparably with the greedy integrated variance design but has significantly lower complexity. Numerical experiments demonstrate the efficacy of the approach for bounded, unbounded, multi-modal and non-tensor product densities. We also show how to use the proposed algorithm to efficiently generate surrogates for inferring unknown model parameters from data using Bayesian inference.
Sensitivity analysis (SA) is en route to becoming an integral part of mathematical modeling. The tremendous potential benefits of SA are, however, yet to be fully realized, both for advancing mechanistic and data-driven modeling of human and natural systems, and in support of decision making. In this perspective paper, a multidisciplinary group of researchers and practitioners revisit the current status of SA, and outline research challenges in regard to both theoretical frameworks and their applications to solve real-world problems. Six areas are discussed that warrant further attention, including (1) structuring and standardizing SA as a discipline, (2) realizing the untapped potential of SA for systems modeling, (3) addressing the computational burden of SA, (4) progressing SA in the context of machine learning, (5) clarifying the relationship and role of SA to uncertainty quantification, and (6) evolving the use of SA in support of decision making. An outlook for the future of SA is provided that underlines how SA must underpin a wide variety of activities to better serve science and society.
We propose a learning algorithm for discovering unknown parameterized dynamical systems by using observational data of the state variables. Our method is built upon and extends the recent work of discovering unknown dynamical systems, in particular those using a deep neural network (DNN). We propose a DNN structure, largely based upon the residual network (ResNet), to not only learn the unknown form of the governing equation but also to take into account the random effect embedded in the system, which is generated by the random parameters. Once the DNN model is successfully constructed, it is able to produce system prediction over a longer term and for arbitrary parameter values. For uncertainty quantification, it allows us to conduct uncertainty analysis by evaluating solution statistics over the parameter space.
Lozanovski, Bill; Downing, David; Tino, Rance; du Plessis, Anton; Tran, Phuong; Jakeman, John D.; Shidid, Darpan; Emmelmann, Claus; Qian, Ma; Choong, Peter; Brandt, Milan; Leary, Martin
Additive Manufacturing (AM), commonly referred to as 3D printing, offers the ability to not only fabricate geometrically complex lattice structures but parts in which lattice topologies in-fill volumes bounded by complex surface geometries. However, current AM processes produce defects on the strut and node elements which make up the lattice structure. This creates an inherent difference between the as-designed and as-fabricated geometries, which negatively affects predictions (via numerical simulation) of the lattice's mechanical performance. Although experimental and numerical analysis of an AM lattice's bulk structure, unit cell and struts have been performed, there exists almost no research data on the mechanical response of the individual as-manufactured lattice node elements. This research proposes a methodology that, for the first time, allows non-destructive quantification of the mechanical response of node elements within an as-manufactured lattice structure. A custom-developed tool is used to extract and classify each individual node geometry from micro-computed tomography scans of an AM fabricated lattice. Voxel-based finite element meshes are generated for numerical simulation and the mechanical response distribution is compared to that of the idealised computer-aided design model. The method demonstrates compatibility with Uncertainty Quantification methods that provide opportunities for efficient prediction of a population of nodal responses from sampled data. Overall, the non-destructive and automated nature of the node extraction and response evaluation is promising for its application in qualification and certification of additively manufactured lattice structures.
We describe and analyze a variance reduction approach for Monte Carlo (MC) sampling that accelerates the estimation of statistics of computationally expensive simulation models using an ensemble of models with lower cost. These lower cost models — which are typically lower fidelity with unknown statistics — are used to reduce the variance in statistical estimators relative to a MC estimator with equivalent cost. We derive the conditions under which our proposed approximate control variate framework recovers existing multifidelity variance reduction schemes as special cases. We demonstrate that existing recursive/nested strategies are suboptimal because they use the additional low-fidelity models only to efficiently estimate the unknown mean of the first low-fidelity model. As a result, they cannot achieve variance reduction beyond that of a control variate estimator that uses a single low-fidelity model with known mean. However, there often exists about an order-of-magnitude gap between the maximum achievable variance reduction using all low-fidelity models and that achieved by a single low-fidelity model with known mean. We show that our proposed approach can exploit this gap to achieve greater variance reduction by using non-recursive sampling schemes. The proposed strategy reduces the total cost of accurately estimating statistics, especially in cases where only low-fidelity simulation models are accessible for additional evaluations. Several analytic examples and an example with a hyperbolic PDE describing elastic wave propagation in heterogeneous media are used to illustrate the main features of the methodology.
International Journal for Numerical Methods in Engineering
Jakeman, John D.; Eldred, Michael S.; Geraci, Gianluca; Gorodetsky, Alex
In this paper, we present an adaptive algorithm to construct response surface approximations of high-fidelity models using a hierarchy of lower fidelity models. Our algorithm is based on multi-index stochastic collocation and automatically balances physical discretization error and response surface error to construct an approximation of model outputs. This surrogate can be used for uncertainty quantification (UQ) and sensitivity analysis (SA) at a fraction of the cost of a purely high-fidelity approach. We demonstrate the effectiveness of our algorithm on a canonical test problem from the UQ literature and a complex multiphysics model that simulates the performance of an integrated nozzle for an unmanned aerospace vehicle. We find that, when the input-output response is sufficiently smooth, our algorithm produces approximations that can be over two orders of magnitude more accurate than single fidelity approximations for a fixed computational budget.
This paper presents a Bayesian multifidelity uncertainty quantification framework, called MFNets, which can be used to overcome three of the major challenges that arise when data from different sources are used to enhance statistical estimation and prediction with quantified uncertainty. Specifically, we demonstrate that MFNets can (1) fuse heterogeneous data sources arising from simulations with different parameterizations, e.g., simulation models with different uncertain parameters or data sets collected under different environmental conditions; (2) encode known relationships among data sources to reduce data requirements; and (3) improve the robustness of existing multifidelity approaches to corrupted data. In this paper we use MFNets to construct linear-subspace surrogates and estimate statistics using Monte Carlo sampling. In addition to numerical examples highlighting the efficacy of MFNets we also provide a number of theoretical results. Firstly we provide a mechanism to assess the quality of the posterior mean of a MFNets Monte Carlo estimator as a frequentist estimator. We then use this result to compare MFNets estimators to existing single fidelity, multilevel, and control variate Monte Carlo estimators. In this context, we show that the Monte Carlo-based control variate estimator can be derived entirely from the use of Bayes rule and linear-Gaussian models—to our knowledge the first such derivation. Finally, we demonstrate the ability to work with different uncertain parameters across different models.
Polynomial chaos expansions (PCE) are well-suited to quantifying uncertainty in models parameterized by independent random variables. The assumption of independence leads to simple strategies for building multivariate orthonormal bases and for sampling strategies to evaluate PCE coefficients. In contrast, the application of PCE to models of dependent variables is much more challenging. Three approaches can be used to construct PCE of models of dependent variables. The first approach uses mapping methods where measure transformations, such as the Nataf and Rosenblatt transformation, can be used to map dependent random variables to independent ones; however we show that this can significantly degrade performance since the Jacobian of the map must be approximated. A second strategy is the class of dominating support methods. In these approaches a PCE is built using independent random variables whose distributional support dominates the support of the true dependent joint density; we provide evidence that this approach appears to produce approximations with suboptimal accuracy. A third approach, the novel method proposed here, uses Gram–Schmidt orthogonalization (GSO) to numerically compute orthonormal polynomials for the dependent random variables. This approach has been used successfully when solving differential equations using the intrusive stochastic Galerkin method, and in this paper we use GSO to build PCE using a non-intrusive stochastic collocation method. The stochastic collocation method treats the model as a black box and builds approximations of the input–output map from a set of samples. Building PCE from samples can introduce ill-conditioning which does not plague stochastic Galerkin methods. To mitigate this ill-conditioning we generate weighted Leja sequences, which are nested sample sets, to build accurate polynomial interpolants. We show that our proposed approach, GSO with weighted Leja sequences, produces PCE which are orders of magnitude more accurate than PCE constructed using mapping or dominating support methods.