Velocity Measurements Using Magnetic Pickups
Abstract not provided.
Abstract not provided.
The purpose of this document is to briefly frame the challenges of detecting low, slow, and small (LSS) unmanned aerial systems (UAS). The conclusion drawn from internal discussions and external reports is the following; detection of LSS UAS is a challenging problem that can- not be achieved with a single detection modality for all potential targets. Classification of LSS UAS, especially classification in the presence of background clutter (e.g., urban environment) or other non-threating targets (e.g., birds), is under-explored. Though information of avail- able technologies is sparse, many of the existing options for UAS detection appear to be in their infancy (when compared to more established ground-based air defense systems for larger and/or faster threats). Companies currently providing or developing technologies to combat the UAS safety and security problem are certainly worth investigating, however, no company has provided the statistical evidence necessary to support robust detection, identification, and/or neutralization of LSS UAS targets. The results of a market survey are included that highlights potential commercial entities that could contribute some technology that assists in the detection, classification, and neutral- ization of a LSS UAS. This survey found no clear and obvious commercial solution, though recommendations are given for further investigation of several potential systems.
Optical Engineering
Numerous methods are available to measure the spatial frequency response (SFR) of an optical system. A recent change to the ISO 12233 photography resolution standard includes a sinusoidal Siemens star test target. We take the sinusoidal Siemens star proposed by the ISO 12233 standard, measure system SFR, and perform an analysis of errors induced by incorrectly identifying the center of a test target. We show a closed-form solution for the radial profile intensity measurement given an incorrectly determined center and describe how this error reduces the measured SFR of the system. Using the closed-form solution, we propose a two-step process by which test target centers are corrected and the measured SFR is restored to the nominal, correctly centered values.
The horizontal television lines (HTVL) metric has been the primary quantity used by division 6000 related to camera resolution for high consequence security systems. This document shows HTVL measurements are fundamen- tally insufficient as a metric to determine camera resolution, and propose a quantitative, standards based methodology by measuring the camera system modulation transfer function (MTF), the most common and accepted metric of res- olution in the optical science community. Because HTVL calculations are easily misinterpreted or poorly defined, we present several scenarios in which HTVL is frequently reported, and discuss their problems. The MTF metric is discussed, and scenarios are presented with calculations showing the application of such a metric.