The ASC Advanced Machine Learning Initiative at Sandia National Laboratories: FY21 Accomplishments and FY22 Plans
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Acta Materialia
In this study, a multiscale electron microscopy-based approach is applied to understanding how different aspects of the microstructure in a notched AA6061-T6, including grain boundaries, triple junctions, and intermetallic particles, promote localized dislocation accumulation as a function of applied tensile strain and depth from the sample surface. Experimental measurements and crystal plasticity simulations of dislocation distributions as a function of distance from specified microstructural features both showed preferential dislocation accumulation near intermetallic particles relative to grain boundaries and triple junctions. High resolution electron backscatter diffraction and site-specific transmission electron microscopy characterization showed that high levels of dislocation accumulation near intermetallic particles led to the development of an ultrafine sub-grain microstructure, indicative of a much higher level of local plasticity than predicted from the coarser measurements and simulations. In addition, high resolution measurements in front of a crack tip suggested a compounding influence of intermetallic particles and grain boundaries in dictating crack propagation pathways.
Abstract not provided.
International Journal of Fracture
We describe an approach to predict failure in a complex, additively-manufactured stainless steel part as defined by the third Sandia Fracture Challenge. A viscoplastic internal state variable constitutive model was calibrated to fit experimental tension curves in order to capture plasticity, necking, and damage evolution leading to failure. Defects such as gas porosity and lack of fusion voids were represented by overlaying a synthetic porosity distribution onto the finite element mesh and computing the elementwise ratio between pore volume and element volume to initialize the damage internal state variables. These void volume fraction values were then used in a damage formulation accounting for growth of these existing voids, while new voids were allowed to nucleate based on a nucleation rule. Blind predictions of failure are compared to experimental results. The comparisons indicate that crack initiation and propagation were correctly predicted, and that an initial porosity field superimposed as higher initial damage may provide a path forward for capturing material strength uncertainty. The latter conclusion was supported by predicted crack face tortuosity beyond the usual mesh sensitivity and variability in predicted strain to failure; however, it bears further inquiry and a more conclusive result is pending compressive testing of challenge-built coupons to de-convolute materials behavior from the geometric influence of significant porosity.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Conference Proceedings of the Society for Experimental Mechanics Series
Subcritical crack growth can occur in a glass when the stress intensity factor is less than the fracture toughness if water molecules are present. A novel bi-material beam specimen is proposed to investigate environmentally assisted crack growth (EACG). Two materials with different coefficients of thermal expansion are diffusion bonded at high temperature and cooled to the room temperature which introduces residual stress in the beam. A Finite element (FE) model is developed and initially validated with an analytical model. Steady-state crack (SSC) depth at which mode II stress intensity factor (KII) is zero and the corresponding mode I stress intensity factor (KI) value are obtained for different material pairs and thickness ratios of the top and bottom materials using the FE model. Crack propagation path is also predicted. We finally modify the geometry of the specimen to generate non-constant KI values as the crack propagates.
Conference Proceedings of the Society for Experimental Mechanics Series
Partial penetration laser welds join metal surfaces without additional filler material, providing hermetic seals for a variety of components. The crack-like geometry of a partial penetration weld is a local stress riser that may lead to failure of the component in the weld. Computational modeling of laser welds has shown that the model should include damage evolution to predict the large deformation and failure. We have performed interrupted tensile experiments both to characterize the damage evolution and failure in laser welds and to aid computational modeling of these welds. Several EDM-notched and laser-welded 304L stainless steel tensile coupons were pulled in tension, each one to a different load level, and then sectioned and imaged to show the evolution of damage in the laser weld and in the EDM-notched parent 304L material (having a similar geometry to the partial penetration laser-welded material). SEM imaging of these specimens revealed considerable cracking at the root of the laser welds and some visible micro-cracking in the root of the EDM notch even before peak load was achieved in these specimens. The images also showed deformation-induced damage in the root of the notch and laser weld prior to the appearance of the main crack, though the laser-welded specimens tended to have more extensive damage than the notched material. These experiments show that the local geometry alone is not the cause of the damage, but also microstructure of the laser weld, which requires additional investigation.
Abstract not provided.
Sealing glasses are ubiquitous in high pressure and temperature engineering applications, such as hermetic feed-through electrical connectors. A common connector technology are glass-to-metal seals where a metal shell compresses a sealing glass to create a hermetic seal. Though finite-element analysis has been used to understand and design glass-to-metal seals for many years, there has been little validation of these models. An indentation technique was employed to measure the residual stress on the surface of a simple glass-to-metal seal. Recently developed rate- dependent material models of both Schott 8061 and 304L VAR stainless steel have been applied to a finite-element model of the simple glass-to-metal seal. Model predictions of residual stress based on the evolution of material models are shown. These model predictions are compared to measured data. Validity of the finite- element predictions is discussed. It will be shown that the finite-element model of the glass-to-metal seal accurately predicts the mean residual stress in the glass near the glass-to-metal interface and is valid for this quantity of interest.
Microstructural variabilities are among the predominant sources of uncertainty in structural performance and reliability. We seek to develop efficient algorithms for multiscale calcu- lations for polycrystalline alloys such as aluminum alloy 6061-T6 in environments where ductile fracture is the dominant failure mode. Our approach employs concurrent multiscale methods, but does not focus on their development. They are a necessary but not sufficient ingredient to multiscale reliability predictions. We have focused on how to efficiently use concurrent models for forward propagation because practical applications cannot include fine-scale details throughout the problem domain due to exorbitant computational demand. Our approach begins with a low-fidelity prediction at the engineering scale that is sub- sequently refined with multiscale simulation. The results presented in this report focus on plasticity and damage at the meso-scale, efforts to expedite Monte Carlo simulation with mi- crostructural considerations, modeling aspects regarding geometric representation of grains and second-phase particles, and contrasting algorithms for scale coupling.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Conference Proceedings of the Society for Experimental Mechanics Series
Glass-to-metal seals are used extensively to protect and isolate electronic components. Small strains of just a few percent are typical in the metal during processing of seals, but generate substantial tensile stresses in the glass during the solidification portion of the process. These tensile stresses can lead to glass cracking either immediately or over time, which results in a loss of hermiticity of the seal. Measurement of the metal in the small strain region needs to be very accurate as small differences in the evolving state of the metal have significant influence on the stress state in the glass and glass-metal interfaces. Small strain tensile experiments were conducted over the temperatures range of 25-800 °C. Experiments were designed to quantify stress relaxation and reloading combined with mid-test thermal changes. The effect of strain rate was measured by directly varying the applied strain rate during initial loading and reloading and by monitoring the material response during stress relaxation experiments. Coupled thermal mechanical experiments were developed to capture key features of glass-to-metal seal processing details such as synchronized thermal and mechanical loading, thermal excursions at various strain levels, and thermal cycling during stress relaxation or creep loadings. Small changes in the processing cycle parameters were found to have non-insignificant effect on the metal behavior. The resulting data and findings will be presented.
Abstract not provided.
Abstract not provided.
Applied Mathematical Modelling
A Bayesian framework is developed for characterizing the unknown parameters of probabilistic models for material properties. In this framework, the unknown parameters are viewed as random and described by their posterior distributions obtained from prior information and measurements of quantities of interest that are observable and depend on the unknown parameters. The proposed Bayesian method is applied to characterize an unknown spatial correlation of the conductivity field in the definition of a stochastic transport equation and to solve this equation by Monte Carlo simulation and stochastic reduced order models (SROMs). The Bayesian method is also employed to characterize unknown parameters of material properties for laser welds from measurements of peak forces sustained by these welds.
JOM
Two fundamental approximations in macroscale solid-mechanics modeling are (1) the assumption of scale separation in homogenization theory and (2) the use of a macroscopic plasticity material model that represents, in a mean sense, the multitude of inelastic processes occurring at the microscale. With the goal of quantifying the errors induced by these approximations on engineering quantities of interest, we perform a set of direct numerical simulations (DNS) in which polycrystalline microstructures are embedded throughout a macroscale structure. The largest simulations model over 50,000 grains. The microstructure is idealized using a randomly close-packed Voronoi tessellation in which each polyhedral Voronoi cell represents a grain. An face centered cubic crystal-plasticity model is used to model the mechanical response of each grain. The overall grain structure is equiaxed, and each grain is randomly oriented with no overall texture. The detailed results from the DNS simulations are compared to results obtained from conventional macroscale simulations that use homogeneous isotropic plasticity models. The macroscale plasticity models are calibrated using a representative volume element of the idealized microstructure. Ultimately, we envision that DNS modeling will be used to gain new insights into the mechanics of material deformation and failure.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Probabilistic Engineering Mechanics
The stochastic collocation (SC) and stochastic Galerkin (SG) methods are two well-established and successful approaches for solving general stochastic problems. A recently developed method based on stochastic reduced order models (SROMs) can also be used. Herein we provide a comparison of the three methods for some numerical examples; our evaluation only holds for the examples considered in the paper. The purpose of the comparisons is not to criticize the SC or SG methods, which have proven very useful for a broad range of applications, nor is it to provide overall ratings of these methods as compared to the SROM method. Rather, our objectives are to present the SROM method as an alternative approach to solving stochastic problems and provide information on the computational effort required by the implementation of each method, while simultaneously assessing their performance for a collection of specific problems.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
International Journal of Solids and Structures
A simple, mode-mixity dependent toughness cohesive zone model (MDGc CZM) is described. This phenomenological cohesive zone model has two elements. Mode I energy dissipation is defined by a traction–separation relationship that depends only on normal separation. Mode II (III) dissipation is generated by shear yielding and slip in the cohesive surface elements that lie in front of the region where mode I separation (softening) occurs. The nature of predictions made by analyses that use the MDGc CZM is illustrated by considering the classic problem of an elastic layer loaded by rigid grips. This geometry, which models a thin adhesive bond with a long interfacial edge crack, is similar to that which has been used to measure the dependence of interfacial toughness on crack-tip mode-mixity. The calculated effective toughness vs. applied mode-mixity relationships all display a strong dependence on applied mode-mixity with the effective toughness increasing rapidly with the magnitude of the mode-mixity. The calculated relationships also show a pronounced asymmetry with respect to the applied mode-mixity. As a result, this dependence is similar to that observed experimentally, and calculated results for a glass/epoxy interface are in good agreement with published data that was generated using a test specimen of the same type as analyzed here.
Abstract not provided.
The material characterization tests conducted on 304L VAR stainless steel and Schott 8061 glass have provided higher fidelity data for calibration of material models used in Glass - T o - Metal (GTM) seal analyses. Specifically, a Thermo - Multi - Linear Elastic Plastic ( thermo - MLEP) material model has be en defined for S S304L and the Simplified Potential Energy Clock nonlinear visc oelastic model has been calibrated for the S8061 glass. To assess the accuracy of finite element stress analyses of GTM seals, a suite of tests are proposed to provide data for comparison to mo del predictions.
Abstract not provided.
Abstract not provided.
Abstract not provided.
To support higher fidelity modeling of residual stresses in glass-to-metal (GTM) seals and to demonstrate the accuracy of finite element analysis predictions, characterization and validation data have been collected for Sandia’s commonly used compression seal materials. The temperature dependence of the storage moduli, the shear relaxation modulus master curve and structural relaxation of the Schott 8061 glass were measured and stress-strain curves were generated for SS304L VAR in small strain regimes typical of GTM seal applications spanning temperatures from 20 to 500 C. Material models were calibrated and finite element predictions are being compared to measured data to assess the accuracy of predictions.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in International Journal of Plasticity.
Abstract not provided.
Abstract not provided.
Fracture or tearing of ductile metals is a pervasive engineering concern, yet accurate prediction of the critical conditions of fracture remains elusive. Sandia National Laboratories has been developing and implementing several new modeling methodologies to address problems in fracture, including both new physical models and new numerical schemes. The present study provides a double-blind quantitative assessment of several computational capabilities including tearing parameters embedded in a conventional finite element code, localization elements, extended finite elements (XFEM), and peridynamics. For this assessment, each of four teams reported blind predictions for three challenge problems spanning crack initiation and crack propagation. After predictions had been reported, the predictions were compared to experimentally observed behavior. The metal alloys for these three problems were aluminum alloy 2024-T3 and precipitation hardened stainless steel PH13-8Mo H950. The predictive accuracies of the various methods are demonstrated, and the potential sources of error are discussed.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Recent work at Sandia National Laboratories has focused on preparing strong predictive models for the simulation of ductile failure in metals. The focus of this talk is on the development of engineering-ready models that use a phenomenological approach to represent the ductile fracture processes. As such, an empirical tearing parameter that accounts for mean stress effects along the crack front is presented. A critical value of the tearing parameter is used in finite element calculations as the criterion for crack growth. Regularization is achieved with three different methods and the results are compared. In the first method, upon reaching the critical tearing, the stress within a solid element is decayed by uniformly shrinking the yield surface over a user specified amount of strain. This yields mesh-size dependent results. As a second method for regularization, cohesive surface elements are inserted using an automatic remeshing technique. In the third method, strain-localization elements are inserted with the automated remeshing.
Abstract not provided.
Abstract not provided.
Most engineering materials are inherently inhomogeneous in their processing, internal structure, properties, and performance. Their properties are therefore statistical rather than deterministic. These inhomogeneities manifest across multiple length and time scales, leading to variabilities, i.e. statistical distributions, that are necessary to accurately describe each stage in the process-structure-properties hierarchy, and are ultimately the primary source of uncertainty in performance of the material and component. When localized events are responsible for component failure, or when component dimensions are on the order of microstructural features, this uncertainty is particularly important. For ultra-high reliability applications, the uncertainty is compounded by a lack of data describing the extremely rare events. Hands-on testing alone cannot supply sufficient data for this purpose. To date, there is no robust or coherent method to quantify this uncertainty so that it can be used in a predictive manner at the component length scale. The research presented in this report begins to address this lack of capability through a systematic study of the effects of microstructure on the strain concentration at a hole. To achieve the strain concentration, small circular holes (approximately 100 {micro}m in diameter) were machined into brass tensile specimens using a femto-second laser. The brass was annealed at 450 C, 600 C, and 800 C to produce three hole-to-grain size ratios of approximately 7, 1, and 1/7. Electron backscatter diffraction experiments were used to guide the construction of digital microstructures for finite element simulations of uniaxial tension. Digital image correlation experiments were used to qualitatively validate the numerical simulations. The simulations were performed iteratively to generate statistics describing the distribution of plastic strain at the hole in varying microstructural environments. In both the experiments and simulations, the deformation behavior was found to depend strongly on the character of the nearby microstructure.
Fatigue cracking in metals has been and is an area of great importance to the science and technology of structural materials for quite some time. The earliest stages of fatigue crack nucleation and growth are dominated by the microstructure and yet few models are able to predict the fatigue behavior during these stages because of a lack of microstructural physics in the models. This program has developed several new simulation tools to increase the microstructural physics available for fatigue prediction. In addition, this program has extended and developed microscale experimental methods to allow the validation of new microstructural models for deformation in metals. We have applied these developments to fatigue experiments in metals where the microstructure has been intentionally varied.
Abstract not provided.