Publications

48 Results
Skip to search filters

Role of Environment on the Shear-Induced Structural Evolution of MoS 2 and Impact on Oxidation and Tribological Properties for Space Applications

ACS Applied Materials and Interfaces

Babuska, Tomas F.; Curry, John C.; Dugger, Michael T.; Lu, Ping L.; Xin, Yan X.; Klueter, Sam K.; Kozen, Alexander C.; Grejtak, Tomas G.; Krick, Brandon K.

This work investigates the role of water and oxygen on the shear-induced structural modifications of molybdenum disulfide (MoS2) coatings for space applications and the impact on friction due to oxidation from aging. We observed from transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) that sliding in both an inert environment (i.e., dry N2) or humid lab air forms basally oriented (002) running films of varying thickness and structure. Tribological testing of the basally oriented surfaces created in dry N2 and air showed lower initial friction than a coating with an amorphous or nanocrystalline microstructure. Aging of coatings with basally oriented surfaces was performed by heating samples at 250 °C for 24 h. Post aging tribological testing of the as-deposited coating showed increased initial friction and a longer transition from higher friction to lower friction (i.e., run-in) due to oxidation of the surface. Tribological testing of raster patches formed in dry N2 and air both showed an improved resistance to oxidation and reduced initial friction after aging. The results from this study have implications for the use of MoS2-coated mechanisms in aerospace and space applications and highlight the importance of preflight testing. Preflight cycling of components in inert or air environments provides an oriented surface microstructure with fewer interaction sites for oxidation and a lower shear strength, reducing the initial friction coefficient and oxidation due to aging or exposure to reactive species (i.e., atomic oxygen).

More Details

Improved Throughput and Analysis of Scratch Test Results via Automation and Machine Learning

Lim, Hannah H.; Curry, John C.; Dugger, Michael T.

A data analysis automation interface that incorporates machine learning (ML) has been developed to improve productivity, efficiency, and consistency in identifying and defining critical load values (or other values associated with optically identifiable characteristics) of a coating when a scratch test is performed. In this specific program, the machine learning component of the program has been trained to identify the Critical Load 2 (LC2 ) value by analyzing images of the scratch tracks created in each test. An optical examination of the scratch by a human operator is currently used to determine where this value occurs. However, the vagueness of the standard has led to varying interpretations and nonuniform usage by different operators at different laboratories where the test is implemented, resulting in multiple definitions of the desired parameter. Using a standard set of training and validation images to create the dataset, the critical load can be identified consistently amongst different laboratories using the automation interface without requiring the training of human operators. When the model was used in conjunction with an instrument manufacturer's scratch test software, the model produced accurate and repeatable results and defined LC2 values in as little as half of the time compared to a human operator. When combined with a program that automates other aspects of the scratch testing process usually conducted by a human operator, scratch testing and analysis can occur with little to no intervention from a human beyond initial setup and frees them to complete other work in the lab.

More Details

Formation of Coherent 1H-1T Heterostructures in Single-Layer MoS2on Au(111)

ACS Nano

Wu, Fanglue; Liu, Zhuotong; Hawthorne, Nathaniel; Chandross, M.; Moore, Quentarius M.; Argibay, Nicolas A.; Curry, John C.; Batteas, James D.

Heterojunctions of semiconductors and metals are the fundamental building blocks of modern electronics. Coherent heterostructures between dissimilar materials can be achieved by composition, doping, or heteroepitaxy of chemically different elements. Here, we report the formation of coherent single-layer 1H-1T MoS2 heterostructures by mechanical exfoliation on Au(111), which are chemically homogeneous with matched lattices but show electronically distinct semiconducting (1H phase) and metallic (1T phase) character, with the formation of these heterojunctions attributed to a combination of lattice strain and charge transfer. The exfoliation approach employed is free of tape residues usually found in many exfoliation methods and yields single-layer MoS2 with millimeter (mm) size on the Au surface. Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), scanning tunneling microscopy (STM), and scanning tunneling spectroscopy (STS) have collectively been employed to elucidate the structural and electronic properties of MoS2 monolayers on Au substrates. Bubbles in the MoS2 formed by the trapping of ambient adsorbates beneath the single layer during deposition, have also been observed and characterized. Our work here provides a basis to produce two-dimensional heterostructures which represent potential candidates for future electronic devices.

More Details

Evidence of Inverse Hall-Petch Behavior and Low Friction and Wear in High Entropy Alloys

Scientific Reports

Jones, Morgan J.; Nation, Brendan L.; Wellington-Johnson, John A.; Curry, John C.; Kustas, Andrew K.; Lu, Ping L.; Chandross, M.; Argibay, Nicolas A.

We present evidence of inverse Hall-Petch behavior for a single-phase high entropy alloy (CoCrFeMnNi) in ultra-high vacuum and show that it is associated with low friction coefficients (~0.3). Grain size measurements by STEM validate a recently proposed dynamic amorphization model that accurately predicts grain size-dependent shear strength in the inverse Hall-Petch regime. Wear rates in the initially soft (coarse grained) material were shown to be remarkably low (~10–6 mm3/N-m), the lowest for any HEA tested in an inert environment where oxidation and the formation of mixed metal-oxide films is mitigated. The combined high wear resistance and low friction are linked to the formation of an ultra-nanocrystalline near-surface layer. The dynamic amorphization model was also used to predict an average high angle grain boundary energy (0.87 J/m2). This value was used to explain cavitation-induced nanoporosity found in the highly deformed surface layer, a phenomenon that has been linked to superplasticity.

More Details

Low friction in bcc metals via grain boundary sliding

Physical Review Materials

Hinkle, Adam R.; Curry, John C.; Lim, Hojun L.; Nation, Brendan L.; Jones, Morgan J.; Wellington-Johnson, John A.; Lu, Ping L.; Argibay, Nicolas A.; Chandross, M.

Low friction is demonstrated with pure polycrystalline tantalum sliding contacts in both molecular dynamics simulations and ultrahigh vacuum experiments. This phenomenon is shown to be correlated with deformation occurring primarily through grain boundary sliding and can be explained using a recently developed predictive model for the shear strength of metals. Specifically, low friction is associated with grain sizes at the interface being smaller than a critical, material-dependent value, where a crossover from dislocation mediated plasticity to grain-boundary sliding occurs. Low friction is therefore associated with inverse Hall-Petch behavior and softening of the interface. Direct quantitative comparisons between experiments and atomistic calculations are used to illustrate the accuracy of the predictions.

More Details

Achieving high strength and ductility in traditionally brittle soft magnetic intermetallics via additive manufacturing

Acta Materialia

Babuska, Tomas F.; Wilson, Mark A.; Johnson, Kyle J.; Whetten, Shaun R.; Curry, John C.; Rodelas, Jeffrey R.; Atkinson, Cooper; Lu, Ping L.; Chandross, M.; Krick, Brandon A.; Michael, Joseph R.; Argibay, Nicolas A.; Susan, D.F.; Kustas, Andrew K.

Intermetallic alloys possess exceptional soft magnetic properties, including high permeability, low coercivity, and high saturation induction, but exhibit poor mechanical properties that make them impractical to bulk process and use at ideal compositions. We used laser-based Additive Manufacturing to process traditionally brittle Fe–Co and Fe–Si alloys in bulk form without macroscopic defects and at near-ideal compositions for electromagnetic applications. The binary Fe–50Co, as a model material, demonstrated simultaneous high strength (600–700 MPa) and high ductility (35%) in tension, corresponding to a ∼300% increase in strength and an order-of-magnitude improvement in ductility relative to conventionally processed material. Atomic-scale toughening and strengthening mechanisms, based on engineered multiscale microstructures, are proposed to explain the unusual combination of mechanical properties. This work presents an instance in which metal Additive Manufacturing processes are enabling, rather than limiting, the development of higher-performance alloys.

More Details

In situ tribochemical formation of self-lubricating diamond-like carbon films

Carbon

Argibay, Nicolas A.; Babuska, Tomas F.; Curry, John C.; Dugger, Michael T.; Lu, Ping L.; Adams, David P.; Nation, Brendan L.; Doyle, Barney L.; Pham, Minh P.; Pimentel, Adam S.; Mowry, Curtis D.; Hinkle, Adam H.; Chandross, M.

Diamond-like carbon (DLC) films were tribochemically formed from ambient hydrocarbons on the surface of a highly stable nanocrystalline Pt-Au alloy. A sliding contact between an alumina sphere and Pt-Au coated steel exhibited friction coefficients as low as μ = 0.01 after dry sliding in environments containing trace (ppb) organics. Ex situ analysis indicated that the change in friction coefficient was due to the formation of amorphous carbon films, and Raman spectroscopy and elastic recoil analysis showed that these films consist of sp2/sp3 amorphous carbon with as much as 20% hydrogen. Transmission electron microscopy indicated these films had thicknesses exceeding 100 nm, and were enhanced by the incorporation of worn Pt-Au nanoparticles. The result was highly wear-resistant, low-friction DLC/Pt-Au nanocomposites. Atomistic simulations of hydrocarbons under shear between rigid Pt slabs using a reactive force field showed stress-induced changes in bonding through chain scission, a likely route towards the formation of these coatings. This novel demonstration of in situ tribochemical formation of self-lubricating films has significant impact potential in a wide range of engineering applications.

More Details

Achieving Ultralow Wear with Stable Nanocrystalline Metals

Advanced Materials

Curry, John C.; Babuska, Tomas F.; Furnish, Timothy A.; Lu, Ping L.; Adams, David P.; Kustas, Andrew K.; Nation, Brendan L.; Dugger, Michael T.; Chandross, M.; Clark, Blythe C.; Boyce, Brad B.; Schuh, Christopher A.; Argibay, Nicolas A.

Recent work suggests that thermally stable nanocrystallinity in metals is achievable in several binary alloys by modifying grain boundary energies via solute segregation. The remarkable thermal stability of these alloys has been demonstrated in recent reports, with many alloys exhibiting negligible grain growth during prolonged exposure to near-melting temperatures. Pt–Au, a proposed stable alloy consisting of two noble metals, is shown to exhibit extraordinary resistance to wear. Ultralow wear rates, less than a monolayer of material removed per sliding pass, are measured for Pt–Au thin films at a maximum Hertz contact stress of up to 1.1 GPa. This is the first instance of an all-metallic material exhibiting a specific wear rate on the order of 10−9 mm3 N−1 m−1, comparable to diamond-like carbon (DLC) and sapphire. Remarkably, the wear rate of sapphire and silicon nitride probes used in wear experiments are either higher or comparable to that of the Pt–Au alloy, despite the substantially higher hardness of the ceramic probe materials. High-resolution microscopy shows negligible surface microstructural evolution in the wear tracks after 100k sliding passes. Mitigation of fatigue-driven delamination enables a transition to wear by atomic attrition, a regime previously limited to highly wear-resistant materials such as DLC.

More Details

Shear-induced softening of nanocrystalline metal interfaces at cryogenic temperatures

Scripta Materialia

Chandross, M.; Curry, John C.; Babuska, Tomas F.; Lu, Ping L.; Furnish, Timothy A.; Kustas, Andrew K.; Nation, Brendan L.; Staats, Wayne L.; Argibay, Nicolas A.

We demonstrate inverse Hall-Petch behavior (softening) in pure copper sliding contacts at cryogenic temperatures. By kinetically limiting grain growth, it is possible to generate a quasi-stable ultra-nanocrystalline surface layer with reduced strength. In situ electrical contact resistance measurements were used to determine grain size evolution at the interface, in agreement with reports of softening in highly nanotwinned copper. We also show evidence of a direct correlation between surface grain size and friction coefficient, validating a model linking friction in pure metals and the transition from dislocation mediated plasticity to grain boundary sliding.

More Details

Impact of Microstructure on MoS2 Oxidation and Friction

ACS Applied Materials and Interfaces

Curry, John C.; Wilson, Mark A.; Luftman, Henry S.; Strandwitz, Nicholas C.; Argibay, Nicolas A.; Chandross, Michael; Sidebottom, Mark A.; Krick, Brandon A.

This work demonstrates the role of microstructure in the friction and oxidation behavior of the lamellar solid lubricant molybdenum disulfide (MoS2). We report on systematic investigations of oxidation and friction for two MoS2 films with distinctively different microstructures - amorphous and planar/highly-ordered - before and after exposure to atomic oxygen (AO) and high-temperature (250 °C) molecular oxygen. A combination of experimental tribology, molecular dynamics simulations, X-ray photoelectron spectroscopy (XPS), and high-sensitivity low-energy ion scattering (HS-LEIS) was used to reveal new insights about the links between structure and properties of these widely utilized low-friction materials. Initially, ordered MoS2 films showed a surprising resistance to both atomic and molecular oxygens (even at elevated temperature), retaining characteristic low friction after exposure to extreme oxidative environments. XPS shows comparable oxidation of both coatings via AO; however, monolayer resolved compositional depth profiles from HS-LEIS reveal that the microstructure of the ordered coatings limits oxidation to the first atomic layer.

More Details
48 Results
48 Results