Nanoantenna-Enhanced Resonant Detectors for Improved Infrared Detector Performance
Abstract not provided.
Abstract not provided.
Applied Physics Letters
Here, the design, fabrication, and characterization of an actively tunable long-wave infrared detector, made possible through direct integration of a graphene-enabled metasurface with a conventional type-II superlattice infrared detector, are reported. This structure allows for post-fabrication tuning of the detector spectral response through voltage-induced modification of the carrier density within graphene and, therefore, its plasmonic response. These changes modify the transmittance through the metasurface, which is fabricated monolithically atop the detector, allowing for spectral control of light reaching the detector. Importantly, this structure provides a fabrication-controlled alignment of the metasurface filter to the detector pixel and is entirely solid-state. Using single pixel devices, relative changes in the spectral response exceeding 8% have been realized. These proof-of-concept devices present a path toward solid-state hyperspectral imaging with independent pixel-to-pixel spectral control through a voltage-actuated dynamic response.
Applied Physics Letters
Anisotropic carrier transport properties of unintentionally doped InAs/InAs0.65Sb0.35 type-II strain-balanced superlattice material are evaluated using temperature-and field-dependent magnetotransport measurements performed in the vertical direction on a substrate-removed metal-semiconductor-metal device structure. To best isolate the measured transport to the superlattice, device fabrication entails flip-chip bonding and backside device processing to remove the substrate material and deposit contact metal directly to the bottom of an etched mesa. High-resolution mobility spectrum analysis is used to calculate the conductance contribution and corrected mixed vertical-lateral mobility of the two carrier species present. Combining the latter with lateral mobility results from in-plane magnetotransport measurements on identical superlattice material allows for the calculation of the true vertical majority electron and minority hole mobilities; amplitudes of 4.7 × 10 3 cm2/V s and 1.60 cm2/V s are determined at 77 K, respectively. The temperature-dependent results show that vertical hole mobility rapidly decreases with decreasing temperature due to trap-induced localization and then hopping transport, whereas vertical electron mobility appears phonon scattering-limited at high temperature, giving way to interface roughness scattering at low temperatures, analogous to the lateral electron mobility but with a lower overall magnitude.
Abstract not provided.
Abstract not provided.
Infrared Physics and Technology
Accurate p-type doping of the active region in III-V infrared detectors is essential for optimizing the detector design and overall performance. While most III-V detector absorbers are n-type (e.g., nBn), the minority carrier devices with p-type absorbers would be expected to have relatively higher quantum efficiencies due to the higher mobility of minority carrier electrons. However, there are added challenges to determining the hole carrier concentration in narrow bandgap InAsSb due to the potential for electron accumulation at the surface of the material and at its interface with the layer grown directly below it. Electron accumulation layers form high conductance electron channels that can dominate both resistivity and Hall-effect transport measurements. Therefore, to correctly determine the bulk hole concentration and mobility, temperature- and magnetic-field-dependent transport measurements in conjunction with Multi-Carrier Fit analysis were utilized on a series of p-doped InAs0.91Sb0.09 samples on GaSb substrates. The resulting hole concentrations and mobilities at 77 K (300 K) are 1.6 × 1018 cm−3 (2.3 × 1018 cm−3) and 125 cm2 V−1 s−1 (60 cm2 V−1 s−1), respectively, compared with the intended Be-doping of ∼2 × 1018 cm−3. A surface treatment experiment is conducted to associate one of the electron conducting populations to the surface. Variable temperature (15–390 K) measurements confirmed the different carrier species present in the sample and enabled the extraction of the bulk heavy hole, interface carriers and surface electron transport properties. For the bulk carrier, a thermal activation of intrinsic carriers is identified at high temperatures with a bandgap of EG ∼ 258 meV and the low temperature data suggests an activation energy of EA ∼ 22 meV for the Be dopant atoms. Finally, temperature analysis confirms a surface carrier electron with resulting mobilities and sheet concentrations at 30 K (300 K) of 4500 cm2 V−1 s−1 (4300 ± 100 cm2 V−1 s−1) and 5.6 × 1010 cm−2 (6 × 1010 ± 2 × 1010 cm−2), respectively.
Optics InfoBase Conference Papers
We present micro-scale time-resolved microwave resonator response (μ-TRMRR), a sensitive technique capable of measuring carrier lifetimes in micron-scale materials, something not typically achievable using common techniques like time-resolved photoluminescence or time-resolved microwave reflectance.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Applied Physics
We show that Sb substitution for As in a MBE grown InAs/InAsSb strained layer superlattice (SLS) is accompanied by significant strain fluctuations. The SLS was observed using scanning transmission electron microscopy along the [100] zone axis where the cation and anion atomic columns are separately resolved. Strain analysis based on atomic column positions reveals asymmetrical transitions in the strain profile across the SLS interfaces. The averaged strain profile is quantitatively fitted to the segregation model, which yields a distribution of Sb in agreement with the scanning tunneling microscopy result. The subtraction of the calculated strain reveals an increase in strain fluctuations with the Sb concentration, as well as isolated regions with large strain deviations extending spatially over ∼1 nm, which suggest the presence of point defects.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
International Conference on Optical MEMS and Nanophotonics
We examine integration of a patterned metal nanoantenna (or metasurface) directly onto long-wave infrared detectors. These structures show significantly improved external quantum efficiency compared to their traditional counterparts. We will show simulation and experimental results.
Abstract not provided.
Abstract not provided.
Abstract not provided.
IEEE Aerospace Conference Proceedings
High-quality infrared focal plane arrays (FPAs) are used in many satellite, astronomical, and terrestrial applications. These applications require highly-sensitive, low-noise FPAs, and therefore do not benefit from advances made in low-cost thermal imagers where reducing cost and enabling high-temperature operation drive device development. Infrared detectors used in FPAs have been made for decades from alloys of mercury cadmium telluride (MCT). These infrared detectors are nearing the believed limit of their performance. This limit, known in the infrared detector community as Rule 07, dictates the dark current floor for MCT detectors, in their traditional architecture, for a given temperature and cutoff wavelength. To overcome the bounds imposed by Rule 07, many groups are working on detector compounds other than MCT. We focus on detectors employing III-V-based gallium-free InAsSb superlattice active regions while also changing the basic architecture of the pixel to improve signal-to-noise. Our architecture relies on a resonant, metallic, subwavelength nanoantenna patterned on the absorber surface, in combination with a Fabry-Pérot cavity, to couple the incoming radiation into tightly confined modes near the nanoantenna. This confinement of the incident energy in a thin layer allows us to greatly reduce the volume of the absorbing layer to a fraction of the free-space wavelength, yielding a corresponding reduction in dark current from spontaneously generated electron-hole pairs in the absorber material. This architecture is detector material agnostic and could be applied to MCT detector structures as well, although we focus on using superlattice antimonide-based detector materials. This detector concept has been applied to both mid-wave (3-5 μm) and longwave (8-12 μm) infrared detectors and absorbers. Here we examine long-wave devices, as these detectors currently have a larger gap between desired device performance and that of currently existing detectors. The measured structures show an external quantum efficiency exceeding 50%. We present a comparison of the modeled and measured photoresponse of these detectors and compare these detectors to currently available commercial detectors using relevant metrics such as external quantum efficiency. We also discuss modeling of crosstalk between adjacent pixels and its influence on the potential for a dual-wavelength detector. Finally, we evaluate potential advances in these detectors that may occur in the near future.
Abstract not provided.
Applied Physics Letters
We examined the spectral responsivity of a 1.77 μm thick type-II superlattice based long-wave infrared detector in combination with metallic nanoantennas. Coupling between the Fabry-Pérot cavity formed by the semiconductor layer and the resonant nanoantennas on its surface enables spectral selectivity, while also increasing peak quantum efficiency to over 50%. Electromagnetic simulations reveal that this high responsivity is a direct result of field-enhancement in the absorber layer, enabling significant absorption in spite of the absorber's subwavelength thickness. Notably, thinning of the absorbing material could ultimately yield lower photodetector noise through a reduction in dark current while improving photocarrier collection efficiency. The temperature- and incident-angle-independent spectral response observed in these devices allows for operation over a wide range of temperatures and optical systems. This detector paradigm demonstrates potential benefits to device performance with applications throughout the infrared.
Abstract not provided.
Optics Express
Narrow-bandgap semiconductors such as alloys of InAsAlSb and their heterostructures are considered promising candidates for next generation infrared photodetectors and devices. The prospect of actively tuning the spectral responsivity of these detectors at the pixel level is very appealing. In principle, this could be achieved with a tunable metasurface fabricated monolithically on the detector pixel. Here, we present first steps towards that goal using a complementary metasurface strongly coupled to an epsilon-near-zero (ENZ) mode operating in the long-wave region of the infrared spectrum. We fabricate such a coupled system using the same epitaxial layers used for infrared pixels in a focal plane array and demonstrate the existence of ENZ modes in high mobility layers of InAsSb. We confirm that the coupling strength between the ENZ mode and the metasurface depends on the ENZ layer thickness and demonstrate a transmission modulation on the order of 25%. We further show numerically the expected tunable spectral behavior of such coupled system under reverse and forward bias, which could be used in future electrically tunable detectors.
Abstract not provided.
Abstract not provided.
Physical Review Applied
A set of seven InAs/InAsSb type-II superlattices (T2SLs) were designed to have speci c bandgap energies between 290 meV (4.3 m) and 135 meV (9.2 m) in order to study the e ects of the T2SL bandgap energy on the minority carrier lifetime. A temperature dependent optical pump-probe technique is used to measure the carrier lifetimes, and the e ect of a mid-gap defect level on the carrier recombination dynamics is reported. The Shockley-Read-Hall (SRH) defect state is found to be at energy of approximately -250 12 meV relative to the valence band edge of bulk GaSb for the entire set of T2SL structures, even though the T2SL valence band edge shifts by 155 meV on the same scale. These results indicate that the SRH defect state in InAs/InAsSb T2SLs is singular and is nearly independent of the exact position of the T2SL bandgap or band edge energies. They also suggest the possibility of engineering the T2SL structure such that the SRH state is removed completely from the bandgap, a result that should signi cantly increase the minority carrier lifetime.
Abstract not provided.
Journal of Vacuum Science and Technology B: Nanotechnology and Microelectronics
Significantly improved carrier lifetimes in very-long wave infrared InAs/GaInSb superlattice (SL) absorbers are demonstrated by using time-resolved microwave reflectance (TMR) measurements. A nominal 47.0 Å InAs/21.5 Å Ga0.75In0.25Sb SL structure that produces an approximately 25 μm response at 10 K has a minority carrier lifetime of 140 ± 20 ns at 18 K, which is markedly long for SL absorber with such a narrow bandgap. This improvement is attributed to the strain-engineered ternary design. Such SL employs a shorter period with reduced gallium in order to achieve good optical absorption and epitaxial advantages, which ultimately leads to the improvements in the minority carrier lifetime by reducing Shockley-Read-Hall (SRH) defects. By analyzing the temperature-dependence of TMR decay data, the recombination mechanisms and trap states that currently limit the performance of this SL absorber have been identified. The results show a general decrease in the long-decay lifetime component, which is dominated by the SRH recombination at temperature below ∼30 K, and by Auger recombination at temperatures above ∼45 K.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Applied Physics Letters
The Auger lifetime is a critical intrinsic parameter for infrared photodetectors as it determines the longest potential minority carrier lifetime and consequently the fundamental limitations to their performance. Here, Auger recombination is characterized in a long-wave infrared InAs/InAsSb type-II superlattice. Auger coefficients as small as 7.1 × 10 - 26 cm6/s are experimentally measured using carrier lifetime data at temperatures in the range of 20 K-80 K. The data are compared to Auger-1 coefficients predicted using a 14-band K · p electronic structure model and to coefficients calculated for HgCdTe of the same bandgap. The experimental superlattice Auger coefficients are found to be an order-of-magnitude smaller than HgCdTe.
Abstract not provided.
Applied Physics Letters
Carrier lifetime and dark current measurements are reported for a mid-wavelength infrared InAs0.91Sb0.09 alloy nBn photodetector. Minority carrier lifetimes are measured using a non-contact time-resolved microwave technique on unprocessed portions of the nBn wafer and the Auger recombination Bloch function parameter is determined to be |F1F2|=0.292. The measured lifetimes are also used to calculate the expected diffusion dark current of the nBn devices and are compared with the experimental dark current measured in processed photodetector pixels from the same wafer. Excellent agreement is found between the two, highlighting the important relationship between lifetimes and diffusion currents in nBn photodetectors.
Abstract not provided.
Applied Physics Letters
Minority carrier lifetimes in very long wavelength infrared (VLWIR) InAs/GaInSb superlattices (SLs) are reported using time-resolved microwave reflectance measurements. A strain-balanced ternary SL absorber layer of 47.0Å InAs/21.5Å Ga
Journal of Applied Physics
We present that temperature-dependent measurements of carrier recombination rates using a time-resolved optical pump-probe technique are reported for mid-wave infrared InAs/InAs1-xSbx type-2 superlattices (T2SLs). By engineering the layer widths and alloy compositions, a 16 K band-gap of ~235 ± 10 meV was achieved for five unintentionally and four intentionally doped T2SLs. Carrier lifetimes were determined by fitting lifetime models based on Shockley-Read-Hall (SRH), radiative, and Auger recombination processes to the temperature and excess carrier density dependent data. The minority carrier (MC), radiative, and Auger lifetimes were observed to generally increase with increasing antimony content and decreasing layer thickness for the unintentionally doped T2SLs. The MC lifetime is limited by SRH processes at temperatures below 200 K in the unintentionally doped T2SLs. The extracted SRH defect energy levels were found to be near mid-bandgap. Additionally, it is observed that the MC lifetime is limited by Auger recombination in the intentionally doped T2SLs with doping levels greater than n ~1016 cm-3.
Journal of Crystal Growth
We use cross-sectional scanning tunneling microscopy (STM) to reconstruct the monolayer-by-monolayer composition profile across a representative subset of MBE-grown InAs/InAsSb superlattice layers and find that antimony segregation frustrates the intended compositional discontinuities across both antimonide-on-arsenide and arsenide-on-antimonide heterojunctions. Graded, rather than abrupt, interfaces are formed in either case. We likewise find that the incorporated antimony per superlattice period varies measurably from beginning to end of the multilayer stack. Although the intended antimony discontinuities predict significant discrepancies with respect to the experimentally observed high-resolution x-ray diffraction spectrum, dynamical simulations based on the STM-derived profiles provide an excellent quantitative match to all important aspects of the x-ray data.
Physical Review Applied
Time-resolved measurements of carrier recombination are reported for a midwave infrared InAs/InAs0.66Sb0.34 type-II superlattice (T2SL) as a function of pump intensity and sample temperature. By including the T2SL doping level in the analysis, the Shockley-Read-Hall (SRH), radiative, and Auger recombination components of the carrier lifetime are uniquely distinguished at each temperature. SRH is the limiting recombination mechanism for excess carrier densities less than the doping level (the low-injection regime) and temperatures less than 175 K. A SRH defect energy of 95 meV, either below the T2SL conduction-band edge or above the T2SL valence-band edge, is identified. Auger recombination limits the carrier lifetimes for excess carrier densities greater than the doping level (the high-injection regime) for all temperatures tested. Additionally, at temperatures greater than 225 K, Auger recombination also limits the low-injection carrier lifetime due to the onset of the intrinsic temperature range and large intrinsic carrier densities. Radiative recombination is found to not have a significant contribution to the total lifetime for all temperatures and injection regimes, with the data implying a photon recycling factor of 15. Using the measured lifetime data, diffusion currents are calculated and compared to calculated Hg1-xCdxTe dark current, indicating that the T2SL can have a lower dark current with mitigation of the SRH defect states. These results illustrate the potential for InAs/InAs1-xSbx T2SLs as absorbers in infrared photodetectors.
Proceedings of SPIE - The International Society for Optical Engineering
Conversion of plane waves to surface waves prior to detection allows key advantages in changes to the architecture of the detector pixels in a focal plane array. We have integrated subwavelength patterned metal nanoantennas with various detector materials to incorporate these advantages: midwave infrared indium gallium arsenide antimonide detectors and longwave infrared graphene detectors. Nanoantennas offer a means to make infrared detectors much thinner by converting incoming plane waves to more tightly bound and concentrated surface waves. Thinner architectures reduce both dark current and crosstalk for improved performance. For graphene detectors, which are only one or two atomic layers thick, such field concentration is a necessity for usable device performance, as single pass plane wave absorption is insufficient. Using III-V detector material, we reduced thickness by over an order of magnitude compared to traditional devices. We will discuss Sandia's motivation for these devices, which go beyond simple improvement in traditional performance metrics. The simulation methodology and design rules will be discussed in detail. We will also offer an overview of the fabrication processes required to make these subwavelength structures on at times complex underlying devices based on III-V detector material or graphene on silicon or silicon carbide. Finally, we will present our latest infrared detector characterization results for both III-V and graphene structures.
Abstract not provided.
Abstract not provided.
Physics Review B
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proceedings of SPIE - The International Society for Optical Engineering
Nanoantennas are an enabling technology for visible to terahertz components and may be used with a variety of detector materials. We have integrated subwavelength patterned metal nanoantennas with various detector materials for infrared detection: midwave infrared indium gallium arsenide antimonide detectors, longwave infrared graphene detectors, and shortwave infrared germanium detectors. Nanoantennas offer a means to make infrared detectors much thinner, thus lowering the dark current and improving performance. The nanoantenna converts incoming plane waves to more tightly bound and concentrated surface waves. The active material only needs to extend as far as these bound fields. In the case of graphene detectors, which are only one or two atomic layers thick, such field concentration is a necessity for usable device performance, as single pass absorption is insufficient. The nanoantenna is thus the enabling component of these thin devices. However nanoantenna integration and fabrication vary considerably across these platforms as do the considerations taken into account during design. Here we discuss the motivation for these devices and show examples for the three material systems. Characterization results are included for the midwave infrared detector. © 2014 SPIE.
Abstract not provided.
Abstract not provided.
Journal of Applied Physics
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in Physical Review Letters.
Abstract not provided.
Proceedings of SPIE - The International Society for Optical Engineering
We demonstrate the effects of integrating a nanoantenna to a midwave infrared (MWIR) focal plane array (FPA). We model an antenna-coupled photodetector with a nanoantenna fabricated in close proximity to the active material of a photodetector. This proximity allows us to take advantage of the concentrated plasmonic fields of the nanoantenna. The role of the nanoantenna is to convert free-space plane waves into surface plasmons bound to a patterned metal surface. These plasmonic fields are concentrated in a small volume near the metal surface. Field concentration allows for a thinner layer of absorbing material to be used in the photodetector design and promises improvements in cutoff wavelength and dark current (higher operating temperature). While the nanoantenna concept may be applied to any active photodetector material, we chose to integrate the nanoantenna with an InAsSb photodiode. The geometry of the nanoantenna-coupled detector is optimized to give maximal carrier generation in the active region of the photodiode, and fabrication processes must be altered to accommodate the nanoantenna structure. The intensity profiles and the carrier generation rates in the photodetector active layers are determined by finite element method simulations, and iteration between optical nanoantenna simulation and detector modeling is used to optimize the device structure. © 2012 SPIE.
Abstract not provided.
Proceedings of SPIE - The International Society for Optical Engineering
We have fabricated mid-wave infrared photodetectors containing InAsSb absorber regions and AlAsSb barriers in n-barrier-n (nBn) and n-barrier-p (nBp) configurations, and characterized them by current-voltage, photocurrent, and capacitance-voltage measurements in the 100-200 K temperature range. Efficient collection of photocurrent in the nBn structure requires application of a small reverse bias resulting in a minimum dark current, while the nBp devices have high responsivity at zero bias. When biasing both types of devices for equal dark currents, the nBn structure exhibits a differential resistance significantly higher than the nBp, although the nBp device may be biased for arbitrarily low dark current at the expense of much lower dynamic resistance. Capacitance-voltage measurements allow determination of the electron concentration in the unintentionally-doped absorber material, and demonstrate the existence of an electron accumulation layer at the absorber/barrier interface in the nBn device. Numerical simulations of idealized nBn devices demonstrate that photocurrent collection is possible under conditions of minimal absorber region depletion, thereby strongly suppressing depletion region Shockley-Read-Hall generation. © 2010 Copyright SPIE - The International Society for Optical Engineering.
Abstract not provided.
Abstract not provided.