Publications

56 Results
Skip to search filters

Auto Indexer for Percussive Hammers Final Report

Su, Jiann-Cherng S.; Wright, Elton K.

Geothermal energy has been underutilized in the U.S., primarily due to the high cost of drilling in the harsh environments encountered during the development of geothermal resources. Drilling depths can approach 5,000 m with temperatures reaching 170 C. In situ geothermal fluids are up to ten times more saline than seawater and highly corrosive, and hard rock formations often exceed 240 MPa compressive strength. This combination of extreme conditions pushes the limits of most conventional drilling equipment. Furthermore, enhanced geothermal systems are expected to reach depths of 10,000 m and temperatures more than 300 °C. To address these drilling challenges, Sandia developed a proof-of-concept tool called the auto indexer under an annual operating plan task funded by the Geothermal Technologies Program (GTP) of the U.S. Department of Energy Geothermal Technologies Office. The auto indexer is a relatively simple, elastomer-free motor that was shown previously to be compatible with pneumatic hammers in bench-top testing. Pneumatic hammers can improve penetration rates and potentially reduce drilling costs when deployed in appropriate conditions. The current effort, also funded by DOE GTP, increased the technology readiness level of the auto indexer, producing a scaled prototype for drilling larger diameter boreholes using pneumatic hammers. The results presented herein include design details, modeling and simulation results, and testing results, as well as background on percussive hammers and downhole rotation.

More Details

Direct Subsurface Measurements through Precise Micro Drilling

Su, Jiann-Cherng S.; Bettin, Giorgia B.; Buerger, Stephen B.; Rittikaidachar, Michal; Hobart, Clinton G.; Slightam, Jonathon S.; McBrayer, Kepra M.; Gonzalez, Levi M.; Pope, Joseph S.; Foris, Adam J.; Bruss, Kathryn B.; Kim, Raymond K.; Mazumdar, Anirban

Wellbore integrity is a significant problem in the U.S. and worldwide, which has serious adverse environmental and energy security consequences. Wells are constructed with a cement barrier designed to last about 50 years. Indirect measurements and models are commonly used to identify wellbore damage and leakage, often producing subjective and even erroneous results. The research presented herein focuses on new technologies to improve monitoring and detection of wellbore failures (leaks) by developing a multi-step machine learning approach to localize two types of thermal defects within a wellbore model, a prototype mechatronic system for automatically drilling small diameter holes of arbitrary depth to monitor the integrity of oil and gas wells in situ, and benchtop testing and analyses to support the development of an autonomous real-time diagnostic tool to enable sensor emplacement for monitoring wellbore integrity. Each technology was supported by experimental results. This research has provided tools to aid in the detection of wellbore leaks and significantly enhanced our understanding of the interaction between small-hole drilling and wellbore materials.

More Details

Evaluation of Microhole Drilling Technology for Geothermal Exploration, Assessment, And Monitoring

Mazumdar, Anirban; Buerger, Stephen B.; Foris, Adam J.; Faircloth, Brian F.; Kaspereit, Dennis K.; Su, Jiann-Cherng S.

One of the greatest barriers to geothermal energy expansion is the high cost of drilling during exploration, assessment, and monitoring. Microhole drilling technology—small-diameter 2–4 in. (~5.1–10.2 cm) boreholes—is one potential low-cost alternative for monitoring and evaluating bores. However, delivering high weight-on-bit (WOB), high torque rotational horsepower to a conventional drill bit does not scale down to the hole sizes needed to realize the cost savings. Coiled tube drilling technology is one solution, but these systems are limited by the torque resistance of the coil system, helical buckling in compression, and most of all, WOB management. The evaluation presented herein will: (i) evaluate the technical and economic feasibility of low WOB technologies (specifically, a percussive hammer and a laser-mechanical system), (ii) develop downhole rotational solutions for low WOB drilling, (iii) provide specifications for a low WOB microhole drilling system, (iv) implement WOB control for low WOB drilling, and (v) evaluate and test low WOB drilling technologies.

More Details

Evaluation of Microhole drilling technology for geothermal exploration, assessment, and monitoring

Transactions - Geothermal Resources Council

Su, Jiann-Cherng S.; Mazumdar, Anirban; Buerger, Stephen B.; Foris, Adam J.; Faircloth, Brian

The well documented promise of microholes has not yet matched expectations. A fundamental issue is that delivering high weight-on-bit (WOB), high torque rotational horsepower to a conventional drill bit does not scale down to the hole sizes necessary to realize the envisioned cost savings. Prior work has focused on miniaturizing the various systems used in conventional drilling technologies, such as motors, steering systems, mud handling and logging tools, and coiled tubing drilling units. As smaller diameters are targeted for these low WOB drilling technologies, several associated sets of challenges arise. For example, energy transfer efficiency in small diameter percussive hammers is different than conventional hammers. Finding adequate methods of generating rotation at the bit are also more difficult. A low weight-on-bit microhole drilling system was proposed, conceived, and tested on a limited scale. The utility of a microhole was quantified using flow analyses to establish bounds for usable microholes. Two low weight-on-bit rock reduction techniques were evaluated and developed, including a low technology readiness level concept in the laser-assisted mechanical drill and a modified commercial percussive hammer. Supporting equipment, including downhole rotation and a drill string twist reaction tool, were developed to enable wireline deployment of a drilling assembly. Although the various subsystems were tested and shown to work well individually in a laboratory environment, there is still room for improvement before the microhole drilling system is ready to be deployed. Ruggedizing the various components will be key, as well as having additional capacity in a conveyance system to provide additional capacity for pullback and deployment.

More Details

Automated drilling of high aspect ratio, small diameter holes in remote, confined spaces

ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)

Rittikaidachar, Michal; Hobart, Clinton G.; Slightam, Jonathon S.; Su, Jiann-Cherng S.; Buerger, Stephen B.

We describe the development and benchtop prototype performance characterization of a mechatronic system for automatically drilling small diameter holes of arbitrary depth, to enable monitoring the integrity of oil and gas wells in situ. The precise drilling of very small diameter, high aspect ratio holes, particularly in dimensionally constrained spaces, presents several challenges including bit buckling, limited torsional stiffness, chip clearing, and limited space for the bit and mechanism. We describe a compact mechanism that overcomes these issues by minimizing the unsupported drill bit length throughout the process, enabling the bit to be progressively fed from a chuck as depth increases. When used with flexible drill bits, holes of arbitrary depth and aspect ratio may be drilled orthogonal to the wellbore. The mechanism and a conventional drilling system are tested in deep hole drilling operation. The experimental results show that the system operates as intended and achieves holes with substantially greater aspect ratios than conventional methods with very long drill bits. The mechanism enabled successful drilling of a 1/16" diameter hole to a depth of 9", a ratio of 144:1. Dysfunctions prevented drilling of the same hole using conventional methods.

More Details

Autonomous control of pneumatically-powered percussive drilling through highly layered formations

Proceedings of the American Control Conference

Mazumdar, Anirban; Su, Jiann-Cherng S.; Spencer, Steven; Buerger, Stephen B.

The ability to rapidly drill through diverse, layered materials can greatly enhance future mine-rescue operations, energy exploration, and underground operations. Pneumatic-percussive drilling holds great promise in this area due to its ability to penetrate very hard materials and potential for portability. Currently such systems require expert operators who require extensive training. We envision future applications where first responders who lack such training can still respond rapidly and safely perform operations. Automated techniques can reduce the dependence on expert operators while increasing efficiency and safety. However, current progress in this area is restricted by the difficulty controlling such systems and the complexity of modeling percussive rock-bit interactions. In this work we develop and experimentally validate a novel intelligent percussive drilling architecture that is tailored to autonomously operate in diverse, layered materials. Our approach combines low-level feedback control, machine learning-based material classification, and on-line optimization. Our experimental results demonstrate the effectiveness of this approach and illustrate the performance benefits over conventional methods.

More Details

Estimation and control for efficient autonomous drilling through layered materials

Proceedings of the American Control Conference

Spencer, Steven; Mazumdar, Anirban; Su, Jiann-Cherng S.; Foris, Adam J.; Buerger, Stephen B.

Drilling is a repetitive, dangerous and costly process and a strong candidate for automation. We describe a method for autonomously controlling a rotary drilling process as it transitions through multiple materials with very different dynamics. This approach classifies the drilling medium based on real-time measurements and comparison to prior drilling data, and can identify the material type, drilling region, and approximately optimal set-point based on data from as few as one operating condition. The controller uses these set-points as initial conditions, and then conducts an optimal search to maximize performance, e.g. by minimizing mechanical specific energy. The control architecture is described, and the material estimation process is detailed. The results of experiments that implement autonomous drilling through a layered concrete and granite sample are discussed.

More Details

DE-FOA-EE0005502 Advanced Percussive Drilling Technology for Geothermal Exploration and Development Phase II Report

Su, Jiann-Cherng S.; Raymond, David W.; Prasad, Somuri V.

Percussive hammers are a promising advance in drilling technology for geothermal since they rely upon rock reduction mechanisms that are well-suited for use in the hard, brittle rock characteristic of geothermal formations. The project research approach and work plan includes a critical path to development of a high-temperature (HT) percussive hammer using a two- phase approach. The work completed in Phase I of the project demonstrated the viability of percussive hammers and that solutions to technical challenges in design, material technology, and performance are likely to be resolved. Work completed in Phase II focused on testing the findings from Phase I and evaluating performance of the materials and designs at high- operating temperatures. A high-operating temperature (HOT) drilling facility was designed, built, and used to test the performance of the DTH under extreme conditions. Results from the testing indicate that a high-temperature capable hammer can be developed and is a viable alternative for user in the driller's toolbox.

More Details

Large diameter deep borehole disposal concept for HLW glass

ANS IHLRWM 2017 - 16th International High-Level Radioactive Waste Management Conference: Creating a Safe and Secure Energy Future for Generations to Come - Driving Toward Long-Term Storage and Disposal

Rigali, Mark J.; Hardin, Ernest H.; Stein, Emily S.; Su, Jiann-Cherng S.

This paper considers concepts for disposal of canistered high-level (radioactive) waste (HLW) in large diameter deep boreholes. Vitrified HLW pour canisters are limited in diameter to promote glass cooling, and constitute a large potential application for borehole disposal where diameter is constrained. The objective for disposal would be waste packages with diameter of 22 to 29 inches, which could encompass all existing and projected HLW glass inventory in the United States. Deep, large diameter boreholes of the sizes needed have been successfully drilled, and we identify other potentially effective designs. The depth of disposal boreholes would be site-specific, and need not be as deep as the 5 km being investigated in the Deep Borehole Field Test. For example, a 0.91 m (36 inch) diameter borehole drilled to 3 km could be used for disposal from 2.5 to 3 km (8, 200 to 9, 840 ft). The engineering feasibility of such boreholes is greater today than was concluded by earlier studies done in Sweden and the United States. Moreover, the disposal concept and generic safety case have evolved to a point where borehole construction need not be as elaborate as previously assumed. Each borehole in the example could accommodate approximately 100 waste packages containing canisters of vitrified HLW. Emplacement of the packages would be through a 32-inch (0.81 m) guidance casing, installed in two sections to reduce hoisting loads, and forming a continuous pathway from the surface to total depth. Above the disposal zone would be a nominal 1 km (3, 280-ft) seal interval, similar to previously published concepts. Following those concept studies, the seal system would consist of alternating lifts of swelling clay, backfill and cement. Above the seal zone the borehole would be plugged with cement in the conventional manner for oil-and-gas wells. The function of seals in deep borehole disposal is to maintain the pre-drilling hydrologic regime in the crystalline basement, where groundwater is increasingly saline, stagnant, and ancient. Seals would resist fluid movement and radionuclide transport during an early period of waste heating, but after cooling little fluid movement is expected. Thus, the function of seals could be less important with HLW that has low heat output, and sealing requirements could be limited. The safety case for deep borehole disposal relies on the prevalence of groundwater that is increasingly saline with depth, stagnant, and ancient, in crystalline basement rock that has low bulk permeability and is isolated from surface processes. The minimum depth for disposal depends on sitespecific factors, and may be less than the 2.5 km example. Rough-order-of-magnitude cost estimates show that deep borehole disposal of HLW would be cost-competitive with the lowest cost mine repository options. Thinner overburden, and shallower development of conditions favorable to waste isolation, could make drilling of large-diameter disposal boreholes even more cost effective. The dimensions of the disposal zone and seal zone would be site specific, and would be adjusted to ensure that both are situated in unaltered crystalline basement rock.

More Details

Advanced percussive drilling technology for geothermal exploration and development DE-FOA-EE0005502

Transactions - Geothermal Resources Council

Su, Jiann-Cherng S.; Raymond, David W.; Prasad, Somuri V.; Wolfer, Dale

Percussive hammers are a promising advance in drilling technology for geothermal since they rely upon rock reduction mechanisms that are well-suited for use in the hard, brittle rock characteristic of geothermal formations. Also known as down-the-hole (DTH) hammers, they are also compatible with low-density fluids that are often used for geothermal drilling. Experience in mining and oil and gas drilling has demonstrated their utility for penetrating hard rock. One limitation to more wide-scale deployment is the ability of the tools to operate at high temperatures (∼300°C) due to elastomers used in the construction and the lubrication required for operation. As part of a United States Department of Energy Funding Opportunity Announcement award, Atlas Copco was tasked with developing a high-temperature DTH capable of being used in geothermal environments. A full-scale development effort including design, build, and testing was pursued for the project. This report summarizes the results of the percussive hammer development efforts between Atlas-Copco Secoroc and Sandia National Labs as part of DE-FOA-EE0005502. Certain design details have been omitted due to the proprietary nature of the information.

More Details

Conceptual design for waste packaging and emplacement in deep boreholes

ANS IHLRWM 2017 - 16th International High-Level Radioactive Waste Management Conference: Creating a Safe and Secure Energy Future for Generations to Come - Driving Toward Long-Term Storage and Disposal

Hardin, Ernest H.; Peretz, Fred; Adeniyi, Abiodun; Nogradi, Paul; Su, Jiann-Cherng S.; Cochran, John R.

The Deep Borehole Field Test will include demonstration of the emplacement and retrieval of test waste packages (containing no waste) in a 5 km deep borehole drilled into the crystalline basement. A conceptual design for packaging, surface handling and transfer equipment, and borehole emplacement was developed in anticipation of the demonstration project. Test packages are designed to withstand external pressure greater than 65 MPa, at temperature up to 170°C. Two packaging concepts were developed: 1) flasktype for granular waste, and 2) internal semi-flush type for waste that is pre-canistered in cylindrical containers. Oilfield casing materials and sealing connections would be selected giving a safety factor of 2.0 against yield. Packages would have threaded fittings top and bottom for attachment of impact limiters and latch fittings. Packages would be lowered one-at-a-time into the borehole on electric wireline. This offers important safety advantages over using drill pipe or coiled tubing to lower waste packages, because it avoids the possibility of dropping a heavy assembly in the borehole. An electromechanical latch would release each package, or reconnect for retrieval. Frequency of waste package delivery to a disposal site could be the effective limit on emplacement throughput. Packages would be delivered in a shielded Type B transportation cask and transferred to a shielded, doubleended transfer cask on site. The transfer cask would be upended over the borehole and secured to the wellhead. The transfer cask would become an integral part of the pressure control envelope for well pressure control. Blowout preventers can be incorporated as needed for regulatory compliance. Operational safety has been assessed with respect to normal operations, and off-normal events that could cause package breach in the borehole. Worker exposures can be limited by using standard industry practices for nuclear material handling. The waste packages would effectively be robust pressure vessels that will not breach if dropped during surface handling. The possibility of package breach in the borehole during emplacement can be effectively eliminated using impact limiters on every package.

More Details

Field test to evaluate deep borehole disposal

Radwaste Solutions

Hardin, Ernest H.; Brady, Patrick V.; Clark, Andrew; Cochran, John R.; Freeze, Geoff; Kuhlman, Kristopher L.; MacKinnon, Bob; Sassani, David C.; Su, Jiann-Cherng S.

Sandia National Laboratories has begun research on the potential use of deep boreholes for the dis¬posal of radioactive waste. Characterization activities will focus on measurements and samples that are important for evaluating the long-term iso¬lation capability of the deep borehole disposal (DBD) concept. Engineering demonstration activities will focus on providing data to evaluate the concept’s operational safety and practicality. Procurement of a scientifically acceptable deep borehole field test (DBFT) site and a site management contractor is now under way.

More Details

Active Suppression of Drilling System Vibrations For Deep Drilling

Raymond, David W.; Blankenship, Douglas A.; Buerger, Stephen B.; Cashion, Avery T.; Mesh, Mikhail M.; Radigan, William T.; Su, Jiann-Cherng S.

The dynamic stability of deep drillstrings is challenged by an inability to impart controllability with ever-changing conditions introduced by geology, depth, structural dynamic properties and operating conditions. A multi-organizational LDRD project team at Sandia National Laboratories successfully demonstrated advanced technologies for mitigating drillstring vibrations to improve the reliability of drilling systems used for construction of deep, high-value wells. Using computational modeling and dynamic substructuring techniques, the benefit of controllable actuators at discrete locations in the drillstring is determined. Prototype downhole tools were developed and evaluated in laboratory test fixtures simulating the structural dynamic response of a deep drillstring. A laboratory-based drilling applicability demonstration was conducted to demonstrate the benefit available from deployment of an autonomous, downhole tool with self-actuation capabilities in response to the dynamic response of the host drillstring. A concept is presented for a prototype drilling tool based upon the technical advances. The technology described herein is the subject of U.S. Patent Application No. 62219481, entitled "DRILLING SYSTEM VIBRATION SUPPRESSION SYSTEMS AND METHODS", filed September 16, 2015.

More Details

Conceptual waste packaging options for deep borehole disposal

Su, Jiann-Cherng S.; Hardin, Ernest H.

This report presents four concepts for packaging of radioactive waste for disposal in deep boreholes. Two of these are reference-size packages (11 inch outer diameter) and two are smaller (5 inch) for disposal of Cs/Sr capsules. All four have an assumed length of approximately 18.5 feet, which allows the internal length of the waste volume to be 16.4 feet. However, package length and volume can be scaled by changing the length of the middle, tubular section. The materials proposed for use are low-alloy steels, commonly used in the oil-and-gas industry. Threaded connections between packages, and internal threads used to seal the waste cavity, are common oilfield types. Two types of fill ports are proposed: flask-type and internal-flush. All four package design concepts would withstand hydrostatic pressure of 9,600 psi, with factor safety 2.0. The combined loading condition includes axial tension and compression from the weight of a string or stack of packages in the disposal borehole, either during lower and emplacement of a string, or after stacking of multiple packages emplaced singly. Combined loading also includes bending that may occur during emplacement, particularly for a string of packages threaded together. Flask-type packages would be fabricated and heat-treated, if necessary, before loading waste. The fill port would be narrower than the waste cavity inner diameter, so the flask type is suitable for directly loading bulk granular waste, or loading slim waste canisters (e.g., containing Cs/Sr capsules) that fit through the port. The fill port would be sealed with a tapered, threaded plug, with a welded cover plate (welded after loading). Threaded connections between packages and between packages and a drill string, would be standard drill pipe threads. The internal flush packaging concepts would use semi-flush oilfield tubing, which is internally flush but has a slight external upset at the joints. This type of tubing can be obtained with premium, low-profile threaded connections at each end. The internal-flush design would be suitable for loading waste that arrives from the originating site in weld-sealed, cylindrical canisters. Internal, tapered plugs with sealing filet welds would seal the tubing at each end. The taper would be precisely machined onto both the tubing and the plug, producing a metal-metal sealing surface that is compressed as the package is subjected to hydrostatic pressure. The lower plug would be welded in place before loading, while the upper plug would be placed and welded after loading. Conceptual Waste Packaging Options for Deep Borehole Disposal July 30, 2015 iv Threaded connections between packages would allow emplacement singly or in strings screwed together at the disposal site. For emplacement on a drill string the drill pipe would be connected directly into the top package of a string (using an adapter sub to mate with premium semi-flush tubing threads). Alternatively, for wireline emplacement the same package designs could be emplaced singly using a sub with wireline latch, on the upper end. Threaded connections on the bottom of the lowermost package would allow attachment of a crush box, instrumentation, etc.

More Details

Development of a Mine Rescue Drilling System (MRDS)

Knudsen, Steven D.; Broome, Scott T.; Su, Jiann-Cherng S.; Blankenship, Douglas A.

Sandia National Laboratories (Sandia) has a long history in developing compact, mobile, very high-speed drilling systems and this technology could be applied to increasing the rate at which boreholes are drilled during a mine accident response. The present study reviews current technical approaches, primarily based on technology developed under other programs, analyzes mine rescue specific requirements to develop a conceptual mine rescue drilling approach, and finally, proposes development of a phased mine rescue drilling system (MRDS) that accomplishes (1) development of rapid drilling MRDS equipment; (2) structuring improved web communication through the Mine Safety & Health Administration (MSHA) web site; (3) development of an improved protocol for employment of existing drilling technology in emergencies; (4) deployment of advanced technologies to complement mine rescue drilling operations during emergency events; and (5) preliminary discussion of potential future technology development of specialized MRDS equipment. This phased approach allows for rapid fielding of a basic system for improved rescue drilling, with the ability to improve the system over time at a reasonable cost.

More Details

Quantification of uncertainty in machining operations for on-machine acceptance

Tran, Hy D.; Su, Jiann-Cherng S.; Claudet, Andre C.

Manufactured parts are designed with acceptance tolerances, i.e. deviations from ideal design conditions, due to unavoidable errors in the manufacturing process. It is necessary to measure and evaluate the manufactured part, compared to the nominal design, to determine whether the part meets design specifications. The scope of this research project is dimensional acceptance of machined parts; specifically, parts machined using numerically controlled (NC, or also CNC for Computer Numerically Controlled) machines. In the design/build/accept cycle, the designer will specify both a nominal value, and an acceptable tolerance. As part of the typical design/build/accept business practice, it is required to verify that the part did meet acceptable values prior to acceptance. Manufacturing cost must include not only raw materials and added labor, but also the cost of ensuring conformance to specifications. Ensuring conformance is a substantial portion of the cost of manufacturing. In this project, the costs of measurements were approximately 50% of the cost of the machined part. In production, cost of measurement would be smaller, but still a substantial proportion of manufacturing cost. The results of this research project will point to a science-based approach to reducing the cost of ensuring conformance to specifications. The approach that we take is to determine, a priori, how well a CNC machine can manufacture a particular geometry from stock. Based on the knowledge of the manufacturing process, we are then able to decide features which need further measurements from features which can be accepted 'as is' from the CNC. By calibration of the machine tool, and establishing a machining accuracy ratio, we can validate the ability of CNC to fabricate to a particular level of tolerance. This will eliminate the costs of checking for conformance for relatively large tolerances.

More Details
56 Results
56 Results