Publications

Results 1–50 of 131
Skip to search filters

Marine energy environmental permitting and compliance costs

Energies

Peplinski, William J.; Roberts, Jesse D.; Klise, Geoffrey T.; Kramer, Sharon; Barr, Zach; West, Anna; Jones, Craig

Costs to permit Marine Energy projects are poorly understood. In this paper we examine environmental compliance and permitting costs for 19 projects in the U.S., covering the last 2 decades. Guided discussions were conducted with developers over a 3-year period to obtain historical and ongoing project cost data relative to environmental studies (e.g., baseline or pre-project site characterization as well as post-installation effects monitoring), stakeholder outreach, and mitigation, as well as qualitative experience of the permitting process. Data are organized in categories of technology type, permitted capacity, pre-and post-installation, geographic location, and funding types. We also compare our findings with earlier logic models created for the Department of Energy (i.e., Reference Models). Environmental studies most commonly performed were for Fish and Fisheries, Noise, Marine Habitat/Benthic Studies and Marine Mammals. Studies for tidal projects were more expensive than those performed for wave projects and the range of reported project costs tended to be wider than ranges predicted by logic models. For eight projects reporting full project costs, from project start to FERC or USACE permit, the average amount for environmental permitting compliance was 14.6%.

More Details

Turbulence-parameter estimation for current-energy converters using surrogate model optimization

Renewable Energy

Olson, Sterling S.; Su, Jack C.P.; Silva, Humberto; Chartrand, Chris C.; Roberts, Jesse D.

Surrogate models maximize information utility by building predictive models in place of computational or experimentally expensive model runs. Marine hydrokinetic current energy converters require large-domain simulations to estimate array efficiencies and environmental impacts. Meso-scale models typically represent turbines as actuator discs that act as momentum sinks and sources of turbulence and its dissipation. An OpenFOAM model was developed where actuator disc k-ε turbulence was characterized using an approach developed for flows through vegetative canopies. Turbine-wake data from laboratory flume experiments collected at two influent turbulence intensities were used to calibrate parameters in the turbulence-source terms in the k-ε equations. Parameter influences on longitudinal wake profiles were estimated using Gaussian process regression with subsequent optimization minimizing the objective function within 3.1% of those obtained using the full model representation, but for 74% of the computational cost (far fewer model runs). This framework facilitates more efficient parameterization of the turbulence-source equations using turbine-wake data.

More Details

The performance of a spectral wave model at predicting wave farm impacts

Energies

Cameron Mcnatt, J.; Porter, Aaron; Chartrand, Chris C.; Roberts, Jesse D.

For renewable ocean wave energy to support global energy demands, wave energy converters (WECs) will likely be deployed in large numbers (farms), which will necessarily change the nearshore environment. Wave farm induced changes can be both helpful (e.g., beneficial habitat and coastal protection) and potentially harmful (e.g., degraded habitat, recreational, and commercial use) to existing users of the coastal environment. It is essential to estimate this impact through modeling prior to the development of a farm, and to that end, many researchers have used spectral wave models, such as Simulating WAves Nearshore (SWAN), to assess wave farm impacts. However, the validity of the approaches used within SWAN have not been thoroughly verified or validated. Herein, a version of SWAN, called Sandia National Laboratories (SNL)-SWAN, which has a specialized WEC implementation, is verified by comparing its wave field outputs to those of linear wave interaction theory (LWIT), where LWIT is theoretically more appropriate for modeling wave-body interactions and wave field effects. The focus is on medium-sized arrays of 27 WECs, wave periods, and directional spreading representative of likely conditions, as well as the impact on the nearshore. A quantitative metric, the Mean Squared Skill Score, is used. Results show that the performance of SNL-SWAN as compared to LWIT is “Good” to “Excellent”.

More Details

Environmental permitting and compliance cost reduction strategies for the MHK industry: Lessons learned from other industries

Journal of Marine Science and Engineering

Kramer, Sharon; Jones, Craig; Klise, Geoffrey T.; Roberts, Jesse D.; West, Anna; Barr, Zach

The marine and hydrokinetic (MHK) industry plays a vital role in the U.S. clean energy strategy by providing a renewable, domestic energy source that may offset the need for traditional energy sources. The first MHK deployments in the U.S. have incurred very high permitting costs and long timelines for deploying projects, which increases project risk and discourages investment. A key challenge to advancing an economically competitive U.S. MHK industry is reducing the time and cost required for environmental permitting and compliance with government regulations. Other industries such as offshore oil and gas, offshore wind energy, subsea power and data cables, onshore wind energy, and solar energy facilities have all developed more robust permitting and compliance pathways that provide lessons for the MHK industry in the U.S. and may help inform the global consenting process. Based on in-depth review and research into each of the other industries, we describe the environmental permitting pathways, the main environmental concerns and types of monitoring typically associated with them, and factors that appear to have eased environmental permitting and compliance issues.

More Details

Simulating current-energy converters: SNL-EFDC model development, verification, and parameter estimation

Renewable Energy

James, Scott C.; Johnson, Erick L.; Barco, Janet; Roberts, Jesse D.

Increasing interest in power production from ocean, tidal, and river currents has led to significant efforts to maximize energy conversion through optimal design and siting and to minimize effects on the environment. Turbine-based, current-energy-converter (CEC) technologies remove energy from current-driven systems and in the process generate distinct wakes, which can interact with other CEC devices and can alter flow regimes, sediment dynamics, and water quality. This work introduces Sandia National Laboratories-Environmental Fluid Dynamics Code CEC module and verifies it against a two-dimensional analytical solution for power generation and hydrodynamic response of flow through a CEC tidal fence. With a two-dimensional model that accurately reflects an analytical solution, the effort was extended to three-dimensional models of three different laboratory-flume experiments that measured the impacts of CEC devices on flow. Both flow and turbulence model parameters were then calibrated against wake characteristics and turbulence measurements. This is the first time that turbulence parameter values have been specified for CEC devices. Measurements and simulations compare favorably and demonstrate the utility and accuracy of this numerical approach for simulating the impacts of CEC devices on the flow field. The model can be extended to future siting and analyses of CEC arrays in complex domains.

More Details

Wave data assimilation in support of wave energy converter powerprediction: Yakutat, Alaska case study

Proceedings of the Annual Offshore Technology Conference

Dallman, Ann R.; Khalil, Mohammad K.; Raghukumar, Kaus; Jones, Craig; Kasper, Jeremy; Flanary, Christopher; Chang, Grace; Roberts, Jesse D.

Integration of renewable power sources into grids remains an active research and development area,particularly for less developed renewable energy technologies such as wave energy converters (WECs).WECs are projected to have strong early market penetration for remote communities, which serve as naturalmicrogrids. Hence, accurate wave predictions to manage the interactions of a WEC array with microgridsis especially important. Recently developed, low-cost wave measurement buoys allow for operationalassimilation of wave data at remote locations where real-time data have previously been unavailable. This work includes the development and assessment of a wave modeling framework with real-time dataassimilation capabilities for WEC power prediction. The availability of real-time wave spectral componentsfrom low-cost wave measurement buoys allows for operational data assimilation with the Ensemble Kalmanfilter technique, whereby measured wave conditions within the numerical wave forecast model domain areassimilated onto the combined set of internal and boundary grid points while taking into account model andobservation error covariances. The updated model state and boundary conditions allow for more accuratewave characteristic predictions at the locations of interest. Initial deployment data indicated that measured wave data from one buoy that were assimilated intothe wave modeling framework resulted in improved forecast skill for a case where a traditional numericalforecast model (e.g., Simulating WAves Nearshore; SWAN) did not well represent the measured conditions.On average, the wave power forecast error was reduced from 73% to 43% using the data assimilationmodeling with real-time wave observations.

More Details

Big Wheel Farm: Farmland Scour Reduction

Olson, Sterling S.; Chartrand, Chris C.; Roberts, Jesse D.

Flood irrigation benefits from low infrastructure costs and maintenance but the scour near the weirs can cause channeling of the flow preventing the water from evenly dispersing across the field. Using flow obstructions in front of the weir could reduce be a low cost solution to reduce the scour. The mitigation strategy was to virtually simulate the effects of various geometric changes to the morphology (e.g. holes and bumps) in front of the weir as a means to diffuse the high intensity flow coming from the gate. After running a parametric study for the dimensions of the shapes that included a Gaussian, semi-circle, and rectangle; a Gaussian-hole in front of the gates showed the most promise to reduce farm field shear-stresses with the added benefit of being easy to construct and implement in practice. Further the simulations showed that the closer the Gaussian-hole could be placed to the gate the sooner the high shear stress could be reduced. To realize the most benefit from this mitigation strategy, it was determined that the maximum depth of the Gaussian-hole should be 0.5 m. The width of the hole in the flow direction and the length of the Gaussian-hole normal to the flow should be 0.5 m and 3 m respectively as measured by the full width at half maximum.

More Details

Reducing variability in the cost of energy of ocean energy arrays

Renewable and Sustainable Energy Reviews

Topper, Mathew B.R.; Nava, Vincenzo; Collin, Adam J.; Bould, David; Ferri, Francesco; Olson, Sterling S.; Dallman, Ann R.; Roberts, Jesse D.; Ruiz-Minguela, Pablo; Jeffrey, Henry F.

Variability in the predicted cost of energy of an ocean energy converter array is more substantial than for other forms of energy generation, due to the combined stochastic action of weather conditions and failures. If the variability is great enough, then this may influence future financial decisions. This paper provides the unique contribution of quantifying variability in the predicted cost of energy and introduces a framework for investigating reduction of variability through investment in components. Following review of existing methodologies for parametric analysis of ocean energy array design, the development of the DTOcean software tool is presented. DTOcean can quantify variability by simulating the design, deployment and operation of arrays with higher complexity than previous models, designing sub-systems at component level. A case study of a theoretical floating wave energy converter array is used to demonstrate that the variability in levelised cost of energy (LCOE) can be greatest for the smallest arrays and that investment in improved component reliability can reduce both the variability and most likely value of LCOE. A hypothetical study of improved electrical cables and connectors shows reductions in LCOE up to 2.51% and reductions in the variability of LCOE of over 50%; these minima occur for different combinations of components.

More Details

Assessment of wave energy resources and factors affecting conversion

Proceedings of the Annual Offshore Technology Conference

Jones, Craig; Chang, Grace; Dallman, Ann R.; Roberts, Jesse D.; Raghukumar, Kaustubha; McWilliams, Sam

The wave energy resource for U.S. coastal regions has been estimated at approximately 1,200 TWh/ yr (EPRI 2011). The magnitude is comparable to the natural gas and coal energy generation. Although the wave energy industry is relatively new from a commercial perspective, wave energy conversion (WEC) technology is developing at an increasing pace. Ramping up to commercial scale deployment of WEC arrays requires demonstration of performance that is economically competitive with other energy generation methods. The International Electrotechnical Commission has provided technical specifications for developing wave energy resource assessments and characterizations, but it is ultimately up to developers to create pathways for making a specific site competitive. The present study uses example sites to evaluate the annual energy production using different wave energy conversion strategies and examines pathways available to make WEC deployments competitive. The wave energy resource is evaluated for sites along the U.S. coast and combinations of wave modeling and basic resource assessments determine factors affecting the cost of energy at these sites. The results of this study advance the understanding of wave resource and WEC device assessment required to evaluate commercial-scale deployments.

More Details

Improved Wave Energy Production Forecasts for Smart Grid Integration

Dallman, Ann R.; Khalil, Mohammad K.; Raghukumar, Kaus R.; Kasper, Jeremy L.; Jones, Craig J.; Roberts, Jesse D.

Integration of renewable power sources into electrical grids remains an active research and development area, particularly for less developed renewable energy technologies, such as wave energy converters (WECs). High spatio-temporal resolution and accurate wave forecasts at a potential WEC (or WEC array) lease area are needed to improve WEC power prediction and to facilitate grid integration, particularly for microgrid locations. The availability of high quality measurement data from recently developed low-cost buoys allows for operational assimilation of wave data into forecast models at remote locations where real-time data have previously been unavailable. This work includes the development and assessment of a wave modeling framework with real-time data assimilation capabilities for WEC power prediction. Spoondrift wave measurement buoys were deployed off the coast of Yakutat, Alaska, a microgrid site with high wave energy resource potential. A wave modeling framework with data assimilation was developed and assessed, which was most effective when the incoming forecasted boundary conditions did not represent the observations well. For that case, assimilation of the wave height data using the ensemble Kalman filter resulted in a reduction of wave height forecast normalized root mean square error from 27% to an average of 16% over a 12-hour period. This results in reduction of wave power forecast error from 73% to 43%. In summary, the use of the low-cost wave buoy data assimilated into the wave modeling framework improved the forecast skill and will provide a useful development tool for the integration of WECs into electrical grids.

More Details

Modeling underwater noise propagation from marine hydrokinetic power devices through a time-domain, velocity-pressure solution

Journal of the Acoustical Society of America

Hafla, Erin H.; Johnson, Erick J.; Johnson, C.N.; Preston, Leiph A.; Aldridge, David A.; Roberts, Jesse D.

Marine hydrokinetic (MHK) devices generate electricity from the motion of tidal and ocean currents, as well as ocean waves, to provide an additional source of renewable energy available to the United States. These devices are a source of anthropogenic noise in the marine ecosystem and must meet regulatory guidelines that mandate a maximum amount of noise that may be generated. In the absence of measured levels from in situ deployments, a model for predicting the propagation of sound from an array of MHK sources in a real environment is essential. A set of coupled, linearized velocity-pressure equations in the time-domain are derived and presented in this paper, which are an alternative solution to the Helmholtz and wave equation methods traditionally employed. Discretizing these equations on a three-dimensional (3D), finite-difference grid ultimately permits a finite number of complex sources and spatially varying sound speeds, bathymetry, and bed composition. The solution to this system of equations has been parallelized in an acoustic-wave propagation package developed at Sandia National Labs, called Paracousti. This work presents the broadband sound pressure levels from a single source in two-dimensional (2D) ideal and Pekeris wave-guides and in a 3D domain with a sloping boundary. Furthermore, the paper concludes with demonstration of Paracousti for an array of MHK sources in a simple wave-guide.

More Details

Offshore wind sediment stability evaluation framework

Proceedings of the Annual Offshore Technology Conference

Jones, Craig; McWilliams, Sam; Engelmann, Georg; Thurlow, Aimee; Roberts, Jesse D.

Developing sound methods to evaluate risk of seabed mobility and alteration of sediment transport patterns in the near-shore coastal regions due to the presence of Offshore Wind (OW) infrastructure is critical to project planning, permitting, and operations. OW systems may include seafloor foundations, cabling, floating structures with gravity anchors, or a combination of several of these systems. Installation of these structures may affect the integrity of the sediment bed, thus affecting seabed dynamics and stability. It is therefore necessary to evaluate hydrodynamics and seabed dynamics and the effects of OW subsea foundations and cables on sediment transport. A methodology is presented here to map a site's sediment (seabed) stability and can in turn support the evaluation of the potential for these processes to affect OW deployments and the local ecology. Sediment stability risk maps are developed for a site offshore of Central Oregon. A combination of geophysical site characterization, metocean analysis, and numerical modeling is used to develop a quantitative assessment of local scour and overall seabed stability. The findings generally show the presence of structures reduces the sediment transport in the lee area of the array by altering current and wave fields. The results illustrate how the overall regional patterns of currents and waves influence local scour near pilings and cables.

More Details
Results 1–50 of 131
Results 1–50 of 131