Publications

9 Results
Skip to search filters

Final report on testing of ACONF technology for the US Coast Guard National Distress Systems : a study for the DOE Energy Storage Systems Program

Corey, Garth P.; Ginn, Jerry W.; Felix, Leanne F.; Murray, Aaron T.

This report documents the results of a six month test program of an Alternative Configuration (ACONF) power management system design for a typical United States Coast Guard (USCG) National Distress System (NDS) site. The USCG/USDOE funded work was performed at Sandia National Laboratories to evaluate the effect of a Sandia developed battery management technology known as ACONF on the performance of energy storage systems at NDS sites. This report demonstrates the savings of propane gas, and the improvement of battery performance when utilizing the new ACONF designs. The fuel savings and battery performance improvements resulting from ACONF use would be applicable to all current NDS sites in the field. The inherent savings realized when using the ACONF battery management design was found to be significant when compared to battery replacement and propane refueling at the remote NDS sites.

More Details

Validated modeling of distributed energy resources at distribution voltages : LDRD project 38672

Ginn, Jerry W.; Ralph, Mark E.

A significant barrier to the deployment of distributed energy resources (DER) onto the power grid is uncertainty on the part of utility engineers regarding impacts of DER on their distribution systems. Because of the many possible combinations of DER and local power system characteristics, these impacts can most effectively be studied by computer simulation. The goal of this LDRD project was to develop and experimentally validate models of transient and steady state source behavior for incorporation into utility distribution analysis tools. Development of these models had not been prioritized either by the distributed-generation industry or by the inverter industry. A functioning model of a selected inverter-based DER was developed in collaboration with both the manufacturer and industrial power systems analysts. The model was written in the PSCAD simulation language, a variant of the ElectroMagnetic Transients Program (EMTP), a code that is widely used and accepted by utilities. A stakeholder team was formed and a methodology was established to address the problem. A list of detailed DER/utility interaction concerns was developed and prioritized. The list indicated that the scope of the problem significantly exceeded resources available for this LDRD project. As this work progresses under separate funding, the model will be refined and experimentally validated. It will then be incorporated in utility distribution analysis tools and used to study a variety of DER issues. The key next step will be design of the validation experiments.

More Details

Removing Barriers to Utility Interconnected Photovoltaic Inverters

Gonzalez, Sigifredo G.; Bonn, Russell H.; Ginn, Jerry W.

The Million Solar Roofs Initiative has motivated a renewed interest in the development of utility interconnected photovoltaic (UIPV) inverters. Government-sponsored programs (PVMaT, PVBONUS) and competition among utility interconnected inverter manufacturers have stimulated innovations and improved the performance of existing technologies. With this resurgence, Sandia National Laboratories (SNL) has developed a program to assist industry initiatives to overcome barriers to UIPV inverters. In accordance with newly adopted IEEE 929-2000, the utility interconnected PV inverters are required to cease energizing the utility grid when either a significant disturbance occurs or the utility experiences an interruption in service. Compliance with IEEE 929-2000 is being widely adopted by utilities as a minimum requirement for utility interconnection. This report summarizes work done at the SNL balance-of-systems laboratory to support the development of IEEE 929-2000 and to assist manufacturers in meeting its requirements.

More Details

Testing to Support Improvements to PV Components and Systems

Bower, Ward I.; Bonn, Russell H.; Ginn, Jerry W.; Gonzalez, Sigifredo G.; Bower, Ward I.

The National Photovoltaic (PV) Program is sponsored by the US Department of Energy and includes a PV Manufacturing Research and Development (R and D) project conducted with industry. This project includes advancements in PV components to improve reliability, reduce costs, and develop integrated PV systems. Participants submit prototypes, pre-production hardware products, and examples of the resulting final products for a range of tests conducted at several national laboratories, independent testing laboratories, and recognized listing agencies. The purpose of this testing is to use the results to assist industry in determining a product's performance and reliability, and to identify areas for potential improvement. This paper briefly describes the PV Manufacturing R and D project, participants in the area of PV systems, balance of systems, and components, and several examples of the different types of product and performance testing used to support and confirm product performance.

More Details
9 Results
9 Results