A zero-dimensional magnetic implosion model with a coupled equivalent circuit for the description of an imploding nested wire array or gas puff is presented. Circuit model results have been compared with data from imploding stainless steel wire arrays, and good agreement has been found. The total energy coupled to the load, , has been applied to a simple semi-analytic K-shell yield model, and excellent agreement with previously reported K-shell yields across all wire array and gas puff platforms is seen. Trade space studies in implosion radius and mass have found that most platforms operate near the predicted maximum yield. In some cases, the K-shell yield may be increased by increasing the mass or radius of the imploding array or gas puff.
A zero-dimensional magnetic implosion model with a coupled equivalent circuit for the description of an imploding nested wire array or gas puff is presented. Circuit model results have been compared with data from imploding stainless steel wire arrays, and good agreement has been found. The total energy coupled to the load, E j × B, has been applied to a simple semi-analytic K-shell yield model, and excellent agreement with previously reported K-shell yields across all wire array and gas puff platforms is seen. Trade space studies in implosion radius and mass have found that most platforms operate near the predicted maximum yield. In some cases, the K-shell yield may be increased by increasing the mass or radius of the imploding array or gas puff.
Abstract: An innovative biomimetic method has been developed to synthesize layered nanocomposite coatings using silica and sugar-derived carbon to mimic the formation of a natural seashell structure. The layered nanocomposites are fabricated through alternate coatings of condensed silica and sugar. Sugar-derived carbon is a cost-effective material as well as environmentally friendly. Pyrolysis of sugar will form polycyclic aromatic carbon sheets, i.e., carbon black. The resulting final nanocomposite coatings can survive temperatures of more than 1150 °C and potentially up to 1650 °C. These coatings have strong mechanical properties, with hardness of more than 11 GPa and elastic modulus of 120 GPa, which are 80% greater than those of pure silica. The layered coatings have many applications, such as shielding in the form of mechanical barriers, body armor, and space debris shields. Graphical abstract: [Figure not available: see fulltext.]
We present an overview of the magneto-inertial fusion (MIF) concept Magnetized Liner Inertial Fusion (MagLIF) pursued at Sandia National Laboratories and review some of the most prominent results since the initial experiments in 2013. In MagLIF, a centimeter-scale beryllium tube or 'liner' is filled with a fusion fuel, axially pre-magnetized, laser pre-heated, and finally imploded using up to 20 MA from the Z machine. All of these elements are necessary to generate a thermonuclear plasma: laser preheating raises the initial temperature of the fuel, the electrical current implodes the liner and quasi-adiabatically compresses the fuel via the Lorentz force, and the axial magnetic field limits thermal conduction from the hot plasma to the cold liner walls during the implosion. MagLIF is the first MIF concept to demonstrate fusion relevant temperatures, significant fusion production (>1013 primary DD neutron yield), and magnetic trapping of charged fusion particles. On a 60 MA next-generation pulsed-power machine, two-dimensional simulations suggest that MagLIF has the potential to generate multi-MJ yields with significant self-heating, a long-term goal of the US Stockpile Stewardship Program. At currents exceeding 65 MA, the high gains required for fusion energy could be achievable.
At the Z Facility at Sandia National Laboratories, the magnetized liner inertial fusion (MagLIF) program aims to study the inertial confinement fusion in deuterium-filled gas cells by implementing a three-step process on the fuel: premagnetization, laser preheat, and Z-pinch compression. In the laser preheat stage, the Z-Beamlet laser focuses through a thin polyimide window to enter the gas cell and heat the fusion fuel. However, it is known that the presence of the few μm thick window reduces the amount of laser energy that enters the gas and causes window material to mix into the fuel. These effects are detrimental to achieving fusion; therefore, a windowless target is desired. The Lasergate concept is designed to accomplish this by "cutting"the window and allowing the interior gas pressure to push the window material out of the beam path just before the heating laser arrives. In this work, we present the proof-of-principle experiments to evaluate a laser-cutting approach to Lasergate and explore the subsequent window and gas dynamics. Further, an experimental comparison of gas preheat with and without Lasergate gives clear indications of an energy deposition advantage using the Lasergate concept, as well as other observed and hypothesized benefits. While Lasergate was conceived with MagLIF in mind, the method is applicable to any laser or diagnostic application requiring direct line of sight to the interior of gas cell targets.
Distributed Phase Plates (DPP) are used in laser experiments to create homogenous intensity distributions of a distinct shape at the location of the laser focus. Such focal shaping helps with controlling the intensity that is impeding on the target. To efficiently use a DPP, the exact size and shape of the focal distribution is of critical importance. We recorded direct images of the focal distribution with ideal continuous-wave (CW) alignment lasers and with laser pulses delivered by the Z-Beamlet facilty. As necessary to protect the imaging sensors, laser pulses will not be performed by full system shots, but rather with limited energy on so-called %60rod-shots', in which Z-Beamlet's main amplifiers do not engage. The images are subsequently analyzed for characteristic radii and shape. All characterizations were performed at the Pecos target area of Sandia with a lens of 3.2 m focal length.
A multi-frame shadowgraphy diagnostic has been developed and applied to laser preheat experiments relevant to the Magnetized Liner Inertial Fusion (MagLIF) concept. The diagnostic views the plasma created by laser preheat in MagLIF-relevant gas cells immediately after the laser deposits energy as well as the resulting blast wave evolution later in time. The expansion of the blast wave is modeled with 1D radiation-hydrodynamic simulations that relate the boundary of the blast wave at a given time to the energy deposited into the fuel. This technique is applied to four different preheat protocols that have been used in integrated MagLIF experiments to infer the amount of energy deposited by the laser into the fuel. The results of the integrated MagLIF experiments are compared with those of two-dimensional LASNEX simulations. The best performing shots returned neutron yields ∼40-55% of the simulated predictions for three different preheat protocols.
High-intensity lasers interacting with solid foils produce copious numbers of relativistic electrons, which in turn create strong sheath electric fields around the target. The proton beams accelerated in such fields have remarkable properties, enabling ultrafast radiography of plasma phenomena or isochoric heating of dense materials. In view of longer-term multidisciplinary purposes (e.g., spallation neutron sources or cancer therapy), the current challenge is to achieve proton energies well in excess of 100 MeV, which is commonly thought to be possible by raising the on-target laser intensity. Here we present experimental and numerical results demonstrating that magnetostatic fields self-generated on the target surface may pose a fundamental limit to sheath-driven ion acceleration for high enough laser intensities. Those fields can be strong enough (~105 T at laser intensities ~1021 W cm-2) to magnetize the sheath electrons and deflect protons off the accelerating region, hence degrading the maximum energy the latter can acquire.
A series of Magnetized Liner Inertial Fusion (MagLIF) experiments have been conducted in order to investigate the mix introduced from various target surfaces during the laser preheat stage. The material mixing was measured spectroscopically for a variety of preheat protocols by employing mid-atomic number surface coatings applied to different regions of the MagLIF target. The data show that the material from the top cushion region of the target can be mixed into the fuel during preheat. For some preheat protocols, our experiments show that the laser-entrance-hole (LEH) foil used to contain the fuel can be transported into the fuel a significant fraction of the stagnation length and degrade the target performance. Preheat protocols using pulse shapes of a few-ns duration result in the observable LEH foil mix both with and without phase-plate beam smoothing. In order to reduce this material mixing, a new capability was developed to allow for a low energy (∼20 J) laser pre-pulse to be delivered early in time (-20 ns) before the main laser pulse (∼1.5 kJ). In experiments, this preheat protocol showed no indications of the LEH foil mix. The experimental results are broadly in agreement with pre-shot two-dimensional HYDRA simulations that helped motivate the development of the early pre-pulse capability.
The Magnetized Liner Inertial Fusion concept (MagLIF) [Slutz et al., Phys. Plasmas 17, 056303 (2010)] is being studied on the Z facility at Sandia National Laboratories. Neutron yields greater than 1012 have been achieved with a drive current in the range of 17-18 MA and pure deuterium fuel [Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)]. We show that 2D simulated yields are about twice the best yields obtained on Z and that a likely cause of this difference is the mix of material into the fuel. Mitigation strategies are presented. Previous numerical studies indicate that much larger yields (10-1000 MJ) should be possible with pulsed power machines producing larger drive currents (45-60 MA) than can be produced by the Z machine [Slutz et al., Phys. Plasmas 23, 022702 (2016)]. To test the accuracy of these 2D simulations, we present modifications to MagLIF experiments using the existing Z facility, for which 2D simulations predict a 100-fold enhancement of MagLIF fusion yields and considerable increases in burn temperatures. Experimental verification of these predictions would increase the credibility of predictions at higher drive currents.
X-ray diffraction measurements to characterize phase transitions of dynamically compressed high-Z matter at Mbar pressures require both sufficient photon energy and fluence to create data with high fidelity in a single shot. Large-scale laser systems can be used to generate x-ray sources above 10 keV utilizing line radiation of mid-Z elements. However, the laser-to-x-ray energy conversion efficiency at these energies is low, and thermal x-rays or hot electrons result in unwanted background. We employ polycapillary x-ray lenses in powder x-ray diffraction measurements using solid target x-ray emission from either the Z-Beamlet long-pulse or the Z-Petawatt (ZPW) short-pulse laser systems at Sandia National Laboratories. Polycapillary lenses allow for a 100-fold fluence increase compared to a conventional pinhole aperture while simultaneously reducing the background significantly. This enables diffraction measurements up to 16 keV at the few-photon signal level as well as diffraction experiments with ZPW at full intensity.
Amplification of the transverse scattered component of stimulated Brillouin scattering (SBS) can contribute to optical damage in the large aperture optics of multi-kJ lasers. Because increased laser bandwidth from optical phase modulation (PM) can suppress SBS, high energy laser amplifiers are injected with PM light. Phase modulation distributes the single-frequency spectrum of a master oscillator laser among individual PM sidebands, so a sufficiently high modulation index β can maintain the fluence for all spectral components below the SBS threshold. To avoid injection of single frequency light in the event of a PM failure, a high-speed PM failsafe system (PMFS) must be employed. Because PM is easily converted to AM, essentially all PM failsafes detect AM, with the one described here employing a novel configuration where optical heterodyne detection converts PM to AM, followed by passive AM power detection. Although the PMFS is currently configured for continuous monitoring, it can also detect PM for pulse durations ≥2 ns and could be modified to accommodate shorter pulses. This PMFS was deployed on the Z-Beamlet Laser (ZBL) at Sandia National Laboratories, as required by an energy upgrade to support programs at Sandia's Z Facility such as magnetized liner inertial fusion. Depending on the origin of a PM failure, the PMFS responds in as little as 7 ns. In the event of an instantaneous failure during initiation of a laser shot, this response time translates to a 30-50 ns margin of safety by blocking a pulse from leaving ZBL's regenerative amplifier, which prevents injection of single frequency light into the main amplification chain. The performance of the PMFS, without the need for operator interaction, conforms to the principles of engineered safety.
Existing models for most materials do not describe phase transformations and associated lattice dy- namics (kinetics) under extreme conditions of pressure and temperature. Dynamic x-ray diffraction (DXRD) allows material investigations in situ on an atomic scale due to the correlation between solid-state structures and their associated diffraction patterns. In this LDRD project we have devel- oped a nanosecond laser-compression and picosecond-to-nanosecond x-ray diffraction platform for dynamically-compressed material studies. A new target chamber in the Target Bay in building 983 was commissioned for the ns, kJ Z-Beamlet laser (ZBL) and the 0.1 ns, 250 J Z-Petawatt (ZPW) laser systems, which were used to create 8-16 keV plasma x-ray sources from thin metal foils. The 5 ns, 15 J Chaco laser system was converted to a high-energy laser shock driver to load material samples to GPa stresses. Since laser-to-x-ray energy conversion efficiency above 10 keV is low, we employed polycapillary x-ray lenses for a 100-fold fluence increase compared to a conventional pinhole aperture while simultaneously reducing the background significantly. Polycapillary lenses enabled diffraction measurements up to 16 keV with ZBL as well as diffraction experiments with ZPW. This x-ray diffraction platform supports experiments that are complementary to gas guns and the Z facility due to different strain rates. Ultimately, there is now a foundation to evaluate DXRD techniques and detectors in-house before transferring the technology to Z. This page intentionally left blank.
The size, temporal and spatial shape, and energy content of a laser pulse for the pre-heat phase of magneto-inertial fusion affect the ability to penetrate the window of the laser-entrance-hole and to heat the fuel behind it. High laser intensities and dense targets are subject to laser-plasma-instabilities (LPI), which can lead to an effective loss of pre-heat energy or to pronounced heating of areas that should stay unexposed. While this problem has been the subject of many studies over the last decades, the investigated parameters were typically geared towards traditional laser driven Inertial Confinement Fusion (ICF) with densities either at 10% and above or at 1% and below the laser's critical density, electron temperatures of 3-5 keV, and laser powers near (or in excess of) 1 × 1015 W/cm2. In contrast, Magnetized Liner Inertial Fusion (MagLIF) [Slutz et al., Phys. Plasmas 17, 056303 (2010) and Slutz and Vesey, Phys. Rev. Lett. 108, 025003 (2012)] currently operates at 5% of the laser's critical density using much thicker windows (1.5-3.5 μm) than the sub-micron thick windows of traditional ICF hohlraum targets. This article describes the Pecos target area at Sandia National Laboratories using the Z-Beamlet Laser Facility [Rambo et al., Appl. Opt. 44(12), 2421 (2005)] as a platform to study laser induced pre-heat for magneto-inertial fusion targets, and the related progress for Sandia's MagLIF program. Forward and backward scattered light were measured and minimized at larger spatial scales with lower densities, temperatures, and powers compared to LPI studies available in literature.
This paper presents a new method for tomographic reconstruction of volumes from sparse observational data. Application scenarios can be found in astrophysics, plasma physics, or whenever the amount of obtainable measurement is limited. In the extreme only a single view of the phenomenon may be available. Our method uses input image data together with complex, user-definable assumptions about 3D density distributions. The parameter values of the user-defined model are fitted to the input image. This allows for incorporating complex, data-driven assumptions, such as helical symmetry, into the reconstruction process. We present two different sparsity-based reconstruction approaches. For the first method, novel virtual views are generated prior to tomography reconstruction. In the second method, voxel groups of similar target densities are defined and used for group sparsity reconstruction. We evaluate our method on real data of a high-energy plasma experiment and show that the reconstruction is consistent with the available measurement and 3D density assumptions. An additional experiment on simulated data demonstrates possible gains when adding an additional view to the presented reconstruction methods.
The differential absorption hard X-ray (DAHX) spectrometer is a diagnostic developed to measure time-resolved radiation between 60 keV and 2 MeV at the Z Facility. It consists of an array of seven Si PIN diodes in a tungsten housing that provides collimation and coarse spectral resolution through differential filters. DAHX is a revitalization of the hard X-ray spectrometer that was fielded on Z prior to refurbishment in 2006. DAHX has been tailored to the present radiation environment in Z to provide information on the power, spectral shape, and time profile of the hard emission by plasma radiation sources driven by the Z machine.