Publications

11 Results
Skip to search filters

Laboratory-scale Investigation of the Influence of Ageing on the Performance and Sensitivity of an Explosive Containing ϵ-CL-20

Propellants, Explosives, Pyrotechnics

Gottfried, Jennifer L.; Pesce-Rodriguez, Rose A.; Farrow, Darcie F.; Dellinger, Jennifer D.

The performance and sensitivity of aged composite explosives based on the epsilon polymorph of hexanitrohexaazaisowurtzitane (ϵ-CL-20) have been evaluated with the laser-induced air shock from energetic materials (LASEM) technique using only milligram quantities of material. The LASEM results demonstrated reduced explosive performance (i. e., lower estimated detonation velocities) and higher sensitivity to ignition with increasing ageing. Chemical analysis of the explosive formulation subjected to ambient and accelerated aging was conducted to help understand the LASEM results. The Fourier Transform Infrared (FTIR) spectra revealed no evidence for conversion to lower-energy polymorphs. Based on the desorption gas chromatography/mass spectrometry (D-GC/MS) results, the observed decrease in performance and increase in sensitivity for the explosive powder aged at 100 °C (relative to ambient and 70 °C aging) have been attributed to changes related to solvent inclusions in the molding powders.

More Details

Fibrous filter efficiency and pressure drop in the viscous-inertial transition flow regime

Aerosol Science and Technology

Hubbard, Joshua A.; Brockmann, John E.; Dellinger, Jennifer D.; Lucero, Daniel A.; Sanchez, A.L.; Servantes, B.L.

Fibrous filter pressure drop and aerosol collection efficiency were measured at low air pressures (0.2-0.8 atm) and high face velocities (5-19 m/s) to give fiber Reynolds numbers lying in the viscous-inertial transition flow regime (1-15). In this regime, contemporary filtration theory based on Kuwabara's viscous flow through an ensemble of fibers underpredicts single fiber impaction by several orders of magnitude. Streamline curvature increases substantially as air stream inertial forces become significant. Dimensionless pressure drop measurements followed the viscous-inertial theory of Robinson and Franklin (1972) rather than Darcy's linear pressure-velocity relationship. Sodium chloride and iron nano-agglomerate aerosols were tested to provide a comparison between particles of dissimilar densities and shape factors. Total filter efficiency collapsed when plotted against the particle Stokes number and fiber Reynolds number. Efficiencies were then modeled with an impactor type equation where the cutpoint Stokes number and a steepness parameter described data well in the sharply increasing portion of the curve (20%-80% efficiency). A minimum in collection efficiency was observed at small Stokes numbers and attributed to interception and diffusive effects. The cutpoint Stokes number was a linearly decreasing function of fiber Reynolds number. Single fiber efficiencies were calculated from total filter efficiencies and compared to contemporary viscous flow impaction theory (Stechkina et al. 1969), and numerical simulations of single fiber efficiencies from the literature. Existing theories underpredicted measured single fiber efficiencies, although comparison is problematic. The assumption of uniform flow conditions for each successive layer of fibers is questionable; thus, the common exponential relationship between single fiber efficiency and total filter efficiency may not be appropriate in this regime. Copyright © American Association for Aerosol Research.

More Details

Effects of degradation and porosity on the load bearing properties of model hydroxyapatite bone scaffolds

Journal of Biomedical Materials Research - Part A

Dellinger, Jennifer D.; Wojtowicz, Abigail M.; Jamison, Russell D.

Degradation of three types of model hydroxyapatite (HA) scaffolds was studied after in vitro degradation in a sodium acetate buffer (pH 4). Degradation was evaluated using compression testing, scanning electron microscopy (SEM), inductively coupled plasma (ICP) analysis, and weight measurements. Scaffolds were fabricated with a solid freeform fabrication (SFF) technique based on the robotic deposition of colloidal pastes. Scaffolds had a macrostructure resembling a lattice of rods. Scaffolds contained either macropores (270 or 680 μm in the x-y direction and 280 μm in the z-direction) and micropores (1-30-μm pores and pores <1 μm) or only macropores pores (270 μm in the x-y direction and 280 μm in the z-direction). A computer-aided design (CAD) program controlled the size and distribution of macropores; micropores were created by polymethyl-methacrylate (PMMA) microsphere porogens (1-30-μm pore diameter) and controlled sintering (pores <1 μm). Percent weight loss of the scaffolds and calcium and phosphorus ion concentrations in solution increased as the degradation period increased for all scaffold types. After degradation, compressive strength and compressive modulus decreased significantly for those scaffolds with microporosity. For scaffolds without microporosity, the changes in strength and modulus after degradation were not statistically significant. The compressive strength of scaffolds without microporosity was significantly greater than the scaffolds with microporosity. © 2006 Wiley Periodicals, Inc.

More Details

Bone response to 3-D periodic hydroxyapatite scaffolds with and without tailored microporosity to deliver bone morphogenetic protein 2

Proposed for publication in the Journal of Biomedical Materials Research.

Cesarano, Joseph C.; Dellinger, Jennifer D.

The in vivo bone response of 3D periodic hydroxyapatite (HA) scaffolds is investigated. Two groups of HA scaffolds (11 mm diameter x 3.5 mm thick) are fabricated by direct-write assembly of a concentrated HA ink. The scaffolds consist of cylindrical rods periodically arranged into four quadrants with varying separation distances between rods. In the first group, HA rods (250 {micro}m in diameter) are patterned to create pore channels, whose areal dimensions are 250 x 250 {micro}m{sup 2} in quadrant 1, 250 x 500 {micro}m{sup 2} in quadrants 2 and 4, and 500 x 500 {micro}m{sup 2} in quadrant 3. In the second group, HA rods (400 {micro}m in diameter) are patterned to create pore channels, whose areal dimensions of 500 x 500 {micro}m{sup 2} in quadrant 1, 500 x 750 {micro}m{sup 2} in quadrants 2 and 4, and 750 x 750 {micro}m{sup 2} in quadrant 3. Each group of scaffolds is partially densified by sintering at 1200 C prior to being implanted bilaterally in trephine defects of skeletally mature New Zealand White rabbits. Their tissue response is evaluated at 8 and 16 weeks using micro-computed tomography, histology, and scanning electron microscopy. New trabecular bone is conducted rapidly and efficiently across substantial distances within these patterned 3D HA scaffolds. Our observations suggest that HA rods are first coated with a layer of new bone followed by subsequent scaffold infilling via outward and inward radial growth of the coated regions. Direct-write assembly of 3D periodic scaffolds composed of micro-porous HA rods arrayed to produce macro-pores that are size-matched to trabecular bone may represent an optimal strategy for bone repair and replacement structures.

More Details
11 Results
11 Results