Loss of Utility Detection Capabilities for Today?s Utility Interconnected Photovoltaic Inverters
Abstract not provided.
Abstract not provided.
Abstract not provided.
The U.S. Department of Energy (DOE) provides scientific infrastructure and data archives to the international Arctic research community through a national user facility, the ARM Climate Research Facility, located on the North Slope of Alaska. The ARM sites at Barrow and Atqasuk, Alaska have been collecting and archiving atmospheric data for more than 10 years. These data have been used for scientific investigation as well as remote sensing validations. Funding from the Recovery Act (American Recovery and Reinvestment Act of 2009) will be used to install new instruments and upgrade existing instruments at the North Slope sites. These instruments include: scanning precipitation radar; scanning cloud radar; automatic balloon launcher; high spectral resolution lidar; eddy correlation flux systems; and upgraded ceilometer, AERI, micropulse lidar, and millimeter cloud radar. Information on these planned additions and upgrades will be provided in our poster. An update on activities planned at Oliktok Point will also be provided.
Abstract not provided.
The National Ecological Observatory Network (NEON) is an ambitious National Science Foundation sponsored project intended to accumulate and disseminate ecologically informative sensor data from sites among 20 distinct biomes found within the United States and Puerto Rico over a period of at least 30 years. These data are expected to provide valuable insights into the ecological impacts of climate change, land-use change, and invasive species in these various biomes, and thereby provide a scientific foundation for the decisions of future national, regional, and local policy makers. NEON's objectives are of substantial national and international importance, yet they must be achieved with limited resources. Sandia National Laboratories was therefore contracted to examine four areas of significant systems engineering concern; specifically, alternatives to commercial electrical utility power for remote operations, approaches to data acquisition and local data handling, protocols for secure long-distance data transmission, and processes and procedures for the introduction of new instruments and continuous improvement of the sensor network. The results of these preliminary systems engineering evaluations are presented, with a series of recommendations intended to optimize the efficiency and probability of long-term success for the NEON enterprise.
Abstract not provided.
Abstract not provided.
Abstract not provided.