Publications

Results 1–25 of 112
Skip to search filters

The Structure and Evolution of Science and Technology: A Modern Synthesis (UUR LDRD Final Report)

Tsao, Jeffrey Y.

This project matured a new understanding (a “modern synthesis”) of the structure and evolution of science and technology. It created an understanding and framework for how Sandia National Labs, the Department of Energy, and the nation, might improve their research productivity, with significant ramifications on national security and economic competitiveness.

More Details

Ultra-Wide-Bandgap Semiconductors: Challenges and Opportunities (invited)

Kaplar, Robert K.; Allerman, A.A.; Armstrong, Andrew A.; Crawford, Mary H.; Pickrell, Gregory P.; Dickerson, Jeramy R.; Flicker, Jack D.; Neely, Jason C.; Paisley, Elizabeth A.; Baca, Albert G.; Klein, Brianna A.; Douglas, Erica A.; Reza, Shahed R.; Binder, Andrew B.; Yates, Luke Y.; Slobodyan, Oleksiy S.; Sharps, Paul; Simmons, Jerry S.; Tsao, Jeffrey Y.; Hollis, Mark A.; Johnson, Noble J.; Jones, Ken J.; Pavlidis, Dimitris P.; Goretta, Ken G.; Nemanich, Bob N.; Goodnick, Steve G.; Chowdhury, Srabanti C.

Abstract not provided.

AI-Enhanced Co-Design for Next-Generation Microelectronics: Innovating Innovation (Workshop Report)

Descour, Michael R.; Tsao, Jeffrey Y.; Stracuzzi, David J.; Wakeland, Anna K.; Schultz, David R.; Smith, William S.; Weeks, Jacquilyn A.

On April 6-8, 2021, Sandia National Laboratories hosted a virtual workshop to explore the potential for developing AI-Enhanced Co-Design for Next-Generation Microelectronics (AICoM). The workshop brought together two themes. The first theme was articulated in the 2018 Department of Energy Office of Science (DOE SC) “Basic Research Needs for Microelectronics” (BRN) report, which called for a “fundamental rethinking” of the traditional design approach to microelectronics, in which subject matter experts (SMEs) in each microelectronics discipline (materials, devices, circuits, algorithms, etc.) work near-independently. Instead, the BRN called for a non-hierarchical, egalitarian vision of co-design, wherein “each scientific discipline informs and engages the others” in “parallel but intimately networked efforts to create radically new capabilities.” The second theme was the recognition of the continuing breakthroughs in artificial intelligence (AI) that are currently enhancing and accelerating the solution of traditional design problems in materials science, circuit design, and electronic design automation (EDA).

More Details

Creative Outcome as Implausible Utility

Review of General Psychology

Tsao, Jeffrey Y.; Ting, C.L.; Johnson, Curtis M.

Two perspectives are used to reframe Simonton’s recent three-factor definition of creative outcome. The first perspective is functional: that creative ideas are those that add significantly to knowledge by providing both utility and learning. The second perspective is calculational: that learning can be estimated by the change in probabilistic beliefs about an idea’s utility before and after it has played out in its environment. The results of the reframing are proposed conceptual and mathematical definitions of (a) creative outcome as the product of two overarching factors (utility and learning) and (b) learning as a function of two subsidiary factors (blindness reduction and surprise). Learning will be shown to depend much more strongly on surprise than on blindness reduction, so creative outcome may then also be defined as “implausible utility.”.

More Details

Nurturing transformative U.S. energy research: Two guiding principles [Nurturing U.S. energy research: Two guiding principles]

MRS Energy & Sustainability

Tsao, Jeffrey Y.; Narayanamurti, Venkatesh N.

Energy research is critical to continuing advances in human productivity and welfare. In this Commentary, we raise for debate and discussion what in our view is a growing mis-control and mis-protection of U.S. energy research. This flawed approach originates in natural human tendencies exacerbated by an historical misunderstanding of research and development, science and technology, and the relationships between them. We outline the origin of the mis-control and mis-protection, and propose two guiding principles to mitigate them and instead nurture research: (i) focus on people, not projects; and (ii) culturally insulate research from development, but not science from technology. As a result, our hope is to introduce these principles into the discourse now, so they can help guide policy changes in U.S. energy research and development that are currently being driven by powerful geopolitical winds.

More Details

Quantum Nanofabrication: Mechanisms and Fundamental Limits

Wang, George T.; Coltrin, Michael E.; Lu, Ping L.; Miller, Philip R.; Leung, Benjamin L.; Xiao, Xiaoyin X.; Sapkota, Keshab R.; Leonard, Francois L.; Bran Anleu, Gabriela A.; Koleske, Daniel D.; Tsao, Jeffrey Y.; Balakrishnan, Ganesh B.; Addamane, Sadhvikas A.; Nelson, Jeffrey S.

Quantum-size-controlled photoelectrochemical (QSC-PEC) etching, which uses quantum confinement effects to control size, can potentially enable the fabrication of epitaxial quantum nanostructures with unprecedented accuracy and precision across a wide range of materials systems. However, many open questions remain about this new technique, including its limitations and broader applicability. In this project, using an integrated experimental and theoretical modeling approach, we pursue a greater understanding of the time-dependent QSC-PEC etch process and to uncover the underlying mechanisms that determine its ultimate accuracy and precision. We also seek to broaden our understanding of the scope of its ultimate applicability in emerging nanostructures and nanodevices.

More Details

The electrification of energy: Long-term trends and opportunities

MRS Energy & Sustainability

Tsao, Jeffrey Y.; Fouquet, Roger F.; Schubert, E.F.

More Details

Sandia National Laboratories Strategic Context Workshop Series 2017: National Security Futures for Strategic Thinking

Keller, Elizabeth J.; Roll, Elizabeth R.; Aamir, Munaf S.; Bull, Diana L.; Deland, Sharon M.; Haddal, Chad H.; Passell, Howard D.; Foley, John T.; Harwell, Amber S.; Otis, Monique O.; Backus, George A.; Jones, Wendell J.; Bawden, Michael G.; Craft, Richard L.; Kistin, David J.; Martin, Jeffrey B.; McNicol, Bradley R.; Vannoni, Michael G.; Trost, Lawrence C.; Tsao, Jeffrey Y.; Weaver, Karla W.

In August 2017, Sandia convened five workshops to explore the future of advanced technologies and global peace and security through the lenses of deterrence, information, innovation, nonproliferation, and population and Earth systems.

More Details

Visible Quantum Nanophotonics

Subramania, Ganapathi S.; Wang, George T.; Fischer, Arthur J.; Wierer, Jonathan J.; Tsao, Jeffrey Y.; Koleske, Daniel K.; Coltrin, Michael E.; Agarwal, Sapan A.; Anderson, P.D.; Leung, Ben L.

The goal of this LDRD is to develop a quantum nanophotonics capability that will allow practical control over electron (hole) and photon confinement in more than one dimension. We plan to use quantum dots (QDs) to control electrons, and photonic crystals to control photons. InGaN QDs will be fabricated using quantum size control processes, and methods will be developed to add epitaxial layers for hole injection and surface passivation. We will also explore photonic crystal nanofabrication techniques using both additive and subtractive fabrication processes, which can tailor photonic crystal properties. These two efforts will be combined by incorporating the QDs into photonic crystal surface emitting lasers (PCSELs). Modeling will be performed using finite-different time-domain and gain analysis to optimize QD-PCSEL designs that balance laser performance with the ability to nano-fabricate structures. Finally, we will develop design rules for QD-PCSEL architectures, to understand their performance possibilities and limits.

More Details

Footprint of Sandia's August 15 2016 Informal Idea Exploration Session on "Towards an Engineering and Applied Science of Research"

Tsao, Jeffrey Y.; Fleming Lindsley, Elizabeth S.; Heffelfinger, Grant S.; Narayanamurti, Venkatesh N.; Schneider, Rick S.; Starkweather, Lynne M.; Ting, Christina T.; Yajima, Rieko Y.; Bauer, Travis L.; Coltrin, Michael E.; Guy, Donald W.; Jones, Wendell J.; Mareda, John F.; Nenoff, T.M.; Turnley, Jessica G.

On August 15, 2016, Sandia hosted a visit by Professor Venkatesh Narayanamurti. Prof Narayanamurti (Benjamin Peirce Research Professor of Technology and Public Policy at Harvard, Board Member of the Belfer Center for Science and International Affairs, former Dean of the School of Engineering and Applied Science at Harvard, former Dean of Engineering at UC Santa Barbara, and former Vice President of Division 1000 at Sandia). During the visit, a small, informal, all-day idea exploration session on "Towards an Engineering and Applied Science of Research" was conducted. This document is a brief synopsis or "footprint" of the presentations and discussions at this Idea Exploration Session. The intent of this document is to stimulate further discussion about pathways Sandia can take to improve its Research practices.

More Details
Results 1–25 of 112
Results 1–25 of 112