Publications

Results 1–25 of 32
Skip to search filters

Supercritical CO2 sterilization of N95 Masks

Koplow, Jeffrey P.; Smith, Kent S.; Jouravel, Natalia J.; Buffleben, George M.; Sinha, Anupama S.; Negrete, Oscar N.; Barnett, T.; Karnesky, Richard A.

A preliminary investigation of the use of supercritical carbon dioxide for treating of 3M 1860 N95 masks was undertaken to evaluate a potential route to low-cost, scalable, sterilization of personal protective equipment for multiple reuse in hospital settings. Upon entering the supercritical regime, the normally distinct liquid and gaseous phases of CO2 merge into a single homogeneous phase that has density, short-range order, and solvation capacity of a liquid, but the volume-filling and permeation properties that of a gas. This enables supercritical CO2 to function as a vehicle for delivery of biocidal agents such peracetic acid into microporous structures. The potentially adverse effect of a liquid-to-gas phase transition on mask filter media is avoided by conducting cleaning operations above 31 C, the critical temperature for carbon dioxide. A sample of fifteen 3M 1860 N95 masks was subjected to ten consecutive cycles of supercritical CO2 cleaning to determine its effect on mask performance. These 15 masks, along with 5 control samples then underwent a battery of standardized tests at the CDC NIOSH NPPTL research facility in Pittsburgh, PA. The data from these tests strongly suggest (but do not prove) that supercritical carbon dioxide do not damage 3M 1860 N95 masks. Additional tests conducted during this project confirmed the compatibility of supercritical CO2 with ventilator tubing that, like N95 masks, has been in short supply during portions of the COVID-19 pandemic and cannot be sterilized by conventional means. Finally, a control experiment was also conducted to examine the effect of supercritical CO2 on a BSL-2 surrogate virus, vesicular stomatitis virus (VSV), Indiana serotype strain. In the absence of biocidal additives, supercritical CO2 exhibited no measurable lethality against VSV. This surrogate virus experiment suggests that a biocidal additive such as peracetic acid will be necessary to achieve required sterilization metrics.

More Details

Rotary Vapor Compression Cycle Final Report

Kariya, Harumichi A.; Koplow, Jeffrey P.; Staats, Wayne L.

Few technologies are as prevalent in modern everyday life as space heating and cooling. Space heating and cooling dictates the level of comfort experienced inside a building, and can even have effects on productivity. At an extreme scale, space heating and cooling enables places such as subzero Alaska and scorching hot Arizona to be more widely inhabited. Aside from moderating comfort, space cooling facilitates the proliferation of other technologies: temperature and humidity control is important for semiconductor and pharmaceutical laboratories, as well as for the optimal operation of high performance computing centers/data centers.

More Details

SunShot Innovator in Residence Final Report

Koplow, Jeffrey P.

This report describes the development of Radical-Ion Flow Battery (RIFB) technology for electrochemical grid storage, and solar thermochemical cycles for conversion of concentrated solar energy to stored chemical energy. The Radical-Ion Flow Battery stores energy via electrolysis of a molten salt electrolyte such as NaNO2 into an alkali metal and nitrogen dioxide, both of which can be stored as liquids in non-pressurized tanks. The use of extremely facile ion-radical single electron transfer reactions at both electrodes that entail no breaking of covalent bonds is directed towards minimizing thermodynamic irreversibility in the charge/discharge cycle, and eliminating the need for catalytically active electrode materials. Both kinetics and mass transport are also facilitated by the absence of diluent species; the battery electrolyte and active chemical ingredient are one and the same. Our underlying strategy for low-cost scalability is the use of only earth abundant starting materials (NaCl, N2, O2, and steel). The underlying strategy for avoiding the problem of capacity fade over 10,000 charge/discharge cycles is the use of extremely simple chemistry. It is argued that operation at elevated temperature is highly advantageous for very large-scale batteries from the standpoint of battery heat-sinking, access to ultrahigh conductivity electrolytes, and increased electrochemical kinetic rate constants. Numerous practical considerations, such as seals, insulators, and electrical feedthroughs are examined in detail, as are questions related to low-cost mass production and battery techno-economic analysis.

More Details

Twistact techno-economic analysis for wind turbine applications

Naughton, Brian T.; Koplow, Jeffrey P.; Vanness, Justin W.; Sethuraman, Latha S.; Maness, Michael M.; Dykes, Katherine D.

This report is the final deliverable for a techno-economic analysis of the Sandia National Laboratories-developed Twistact rotary electrical conductor. The U.S. Department of Energy Wind Energy Technologies Office supported a team of researchers at Sandia National Laboratories and the National Renewable Energy Laboratory to evaluate the potential of the Twistact technology to serve as a viable replacement to rare-earth materials used in permanent-magnet direct-drive wind turbine generators. This report compares three detailed generator models, two as baseline technologies and a third incorporating the Twistact technology. These models are then used to calculate the levelized cost of energy (LCOE) for three comparable offshore wind plants using the three generator topologies. The National Renewable Energy Laboratorys techno-economic analysis indicates that Twistact technology can be used to design low-maintenance, brush-free, and wire-wound (instead of rare-earth-element (REE) permanent-magnet), direct-drive wind turbine generators without a significant change in LCOE and generation efficiency. Twistact technology acts as a hedge against sources of uncertain costs for direct-drive generators. On the one hand, for permanent-magnet direct-drive (PMDD) generators, the long-term price of REEs may increase due to increases in future demand, from electric vehicles and other technologies, whereas the supply remains limited and geographically concentrated. The potential higher prices in the future adversely affect the cost competitiveness of PMDD generators and may thwart industry investment in the development of the technology for wind turbine applications. Twistact technology can eliminate industry risk around the uncertainty of REE price and availability. Traditional wire-wound direct-drive generators experience reliability issues and higher maintenance costs because of the wear on the contact brushes necessary for field excitation. The brushes experience significant wear and require regular replacement over the lifetime of operation (on the order of a year or potentially less time). For offshore wind applications, the focus of this study, maintenance costs are higher than typical land-based systems due to the added time it often requires to access the site for repairs. Thus, eliminating the need for regular brush replacements reduces the uncertain costs and energy production losses associated with maintenance and replacement of contact brushes. Further, Twistact has a relatively negligible impact on LCOE but hedges risks associated with the current dominant designs for direct-drive generators for PMDD REE price volatility and wire-wound generator contact brush reliability. A final section looks at the overall supply chain of REEs considering the supply-side and demand-side drivers that encourage the risk of depending on these materials to support future deployment of not only wind energy but other industries as well.

More Details

Development of the Sandia Cooler

Johnson, Terry A.; Hecht, Ethan S.; Spencer, Nathan S.; Vanness, Justin W.; Gorman, Ryan G.; Koplow, Jeffrey P.; Staats, Wayne L.; Curgus, Dita B.; Leick, Michael T.; Matthew, Ned D.; Zimmerman, Mark D.; Arienti, Marco A.; Gharagozloo, Patricia E.

This report describes an FY13 effort to develop the latest version of the Sandia Cooler, a breakthrough technology for air-cooled heat exchangers that was developed at Sandia National Laboratories. The project was focused on fabrication, assembly and demonstration of ten prototype systems for the cooling of high power density electronics, specifically high performance desktop computers (CPUs). In addition, computational simulation and experimentation was carried out to fully understand the performance characteristics of each of the key design aspects. This work culminated in a parameter and scaling study that now provides a design framework, including a number of design and analysis tools, for Sandia Cooler development for applications beyond CPU cooling.

More Details

A fundamentally new approach to air-cooled heat exchangers

Koplow, Jeffrey P.

We describe breakthrough results obtained in a feasibility study of a fundamentally new architecture for air-cooled heat exchangers. A longstanding but largely unrealized opportunity in energy efficiency concerns the performance of air-cooled heat exchangers used in air conditioners, heat pumps, and refrigeration equipment. In the case of residential air conditioners, for example, the typical performance of the air cooled heat exchangers used for condensers and evaporators is at best marginal from the standpoint the of achieving maximum the possible coefficient of performance (COP). If by some means it were possible to reduce the thermal resistance of these heat exchangers to a negligible level, a typical energy savings of order 30% could be immediately realized. It has long been known that a several-fold increase in heat exchanger size, in conjunction with the use of much higher volumetric flow rates, provides a straight-forward path to this goal but is not practical from the standpoint of real world applications. The tension in the market place between the need for energy efficiency and logistical considerations such as equipment size, cost and operating noise has resulted in a compromise that is far from ideal. This is the reason that a typical residential air conditioner exhibits significant sensitivity to reductions in fan speed and/or fouling of the heat exchanger surface. The prevailing wisdom is that little can be done to improve this situation; the 'fan-plus-finned-heat-sink' heat exchanger architecture used throughout the energy sector represents an extremely mature technology for which there is little opportunity for further optimization. But the fact remains that conventional fan-plus-finned-heat-sink technology simply doesn't work that well. Their primary physical limitation to performance (i.e. low thermal resistance) is the boundary layer of motionless air that adheres to and envelops all surfaces of the heat exchanger. Within this boundary layer region, diffusive transport is the dominant mechanism for heat transfer. The resulting thermal bottleneck largely determines the thermal resistance of the heat exchanger. No one has yet devised a practical solution to the boundary layer problem. Another longstanding problem is inevitable fouling of the heat exchanger surface over time by particulate matter and other airborne contaminants. This problem is especially important in residential air conditioner systems where often little or no preventative maintenance is practiced. The heat sink fouling problem also remains unsolved. The third major problem (alluded to earlier) concerns inadequate airflow to heat exchanger resulting from restrictions on fan noise. The air-cooled heat exchanger described here solves all of the above three problems simultaneously. The 'Air Bearing Heat Exchanger' provides a several-fold reduction in boundary layer thickness, intrinsic immunity to heat sink fouling, and drastic reductions in noise. It is also very practical from the standpoint of cost, complexity, ruggedness, etc. Successful development of this technology is also expected to have far reaching impact in the IT sector from the standpointpoint of solving the 'Thermal Brick Wall' problem (which currently limits CPU clocks speeds to {approx}3 GHz), and increasing concern about the the electrical power consumption of our nation's information technology infrastructure.

More Details

Combined photodarkening and thermal bleaching measurement of an ytterbium-doped fiber

Proceedings of SPIE - The International Society for Optical Engineering

Ponsoda, Joan J.Montiel; Söderlund, Mikko; Koplow, Jeffrey P.; Koponen, Joona; Iho, Aarni; Honkanen, Seppo

A combined photodarkening and thermal bleaching measurement of a large-mode-area (LMA) ytterbium-doped fiber (YDF) is presented. Photodarkened YDF sample is recovered to pre-photodarkened state by thermal annealing. As a result, this approach enables repeated measurements with the same sample and therefore eliminates uncertainties related to changing of the sample (such as sample length and splice losses). Additionally, our approach potentially improves the accuracy and repeatability of the photodarkening rate measurement, and also allows automation of the measurement procedure. © 2009 SPIE.

More Details
Results 1–25 of 32
Results 1–25 of 32