Publications

Results 1–25 of 35
Skip to search filters

Experimental and Theoretical Investigation of Shock-Induced Reactions in Energetic Materials

Kay, Jeffrey J.; Park, Samuel P.; Kohl, Ian T.; Knepper, Robert

In this work, shock-induced reactions in high explosives and their chemical mechanisms were investigated using state-of-the-art experimental and theoretical techniques. Experimentally, ultrafast shock interrogation (USI, an ultrafast interferometry technique) and ultrafast absorption spectroscopy were used to interrogate shock compression and initiation of reaction on the picosecond timescale. The experiments yielded important new data that appear to indicate reaction of high explosives on the timescale of tens of picoseconds in response to shock compression, potentially setting new upper limits on the timescale of reaction. Theoretically, chemical mechanisms of shock-induced reactions were investigated using density functional theory. The calculations generated important insights regarding the ability of several hypothesized mechanisms to account for shock-induced reactions in explosive materials. The results of this work constitute significant advances in our understanding of the fundamental chemical reaction mechanisms that control explosive sensitivity and initiation of detonation.

More Details

Energy Transfer between Coherently Delocalized States in Thin Films of the Explosive Pentaerythritol Tetranitrate (PETN) Revealed by Two-Dimensional Infrared Spectroscopy

Journal of Physical Chemistry B

Ostrander, Joshua S.; Knepper, Robert; Tappan, Alexander S.; Kay, Jeffrey J.; Zanni, Martin T.; Farrow, Darcie F.

Pentaerythritol tetranitrate (PETN) is a common secondary explosive and has been used extensively to study shock initiation and energy propagation in energetic materials. We report 2D IR measurements of PETN thin films that resolve vibrational energy transfer and relaxation mechanisms. Ultrafast anisotropy measurements reveal a sub-500 fs reorientation of transition dipoles in thin films of vapor-deposited PETN that is absent in solution measurements, consistent with intermolecular energy transfer. The anisotropy is frequency dependent, suggesting spectrally heterogeneous vibrational relaxation. Cross peaks are observed in 2D IR spectra that resolve a specific energy transfer pathway with a 2 ps time scale. Transition dipole coupling calculations of the nitrate ester groups in the crystal lattice predict that the intermolecular couplings are as large or larger than the intramolecular couplings. The calculations match well with the experimental frequencies and the anisotropy, leading us to conclude that the observed cross peak is measuring energy transfer between two eigenstates that are extended over multiple PETN molecules. Measurements of the transition dipole strength indicate that these vibrational modes are coherently delocalized over at least 15-30 molecules. We discuss the implications of vibrational relaxation between coherently delocalized eigenstates for mechanisms relevant to explosives.

More Details

Mechanisms of shock-induced reactions in high explosives

AIP Conference Proceedings

Kay, Jeffrey J.

Understanding the mechanisms by which shock waves initiate chemical reactions in explosives is key to understanding their unique and defining property: the ability to undergo rapid explosive decomposition in response to mechanical stimulus. Although shock-induced reactions in explosives have been studied experimentally and computationally for decades, the nature of even the first chemical reactions that occur in response to shock remain elusive. To predictively understand how explosives respond to shock, the detailed sequence of events that occurs-mechanical deformation, energy transfer, bond breakage, and first chemical reactions-must be understood at the quantum-mechanical level. This paper reviews recent work in this field and ongoing experimental and theoretical work at Sandia National Laboratories in this important area of explosive science.

More Details

Spectroscopic analysis of time-resolved emission from detonating thin film explosive samples

AIP Conference Proceedings

Kay, Jeffrey J.; Wixom, Ryan R.; Jilek, Brook A.; Knepper, Robert; Tappan, Alexander S.; Damm, David L.

We report a series of time-resolved spectroscopic measurements that aim to characterize the reactions that occur during shock initiation of high explosives. The experiments employ time-and wavelength-resolved emission spectroscopy to analyze light emitted from detonating thin explosive films. This paper presents analysis of optical emission spectra from hexanitrostilbene (HNS) and pentaerythritol tetranitrate (PETN) thin film samples. Both vibrationally resolved and broadband emission features are observed in the spectra and area as electronic transitions of intermediate species.

More Details

Pressure dependence of electronic states in secondary explosives: comparison between bulk and air/explosive interface

Farrow, Darcie F.; Farrow, Darcie F.; Kohl, Ian T.; Kohl, Ian T.; Rupper, Stephen G.; Rupper, Stephen G.; Alam, Mary K.; Alam, Mary K.; Martin, Laura E.; Martin, Laura E.; Fan, Hongyou F.; Fan, Hongyou F.; Bian, Kaifu B.; Bian, Kaifu B.; Knepper, Robert; Knepper, Robert; Marquez, Michael P.; Marquez, Michael P.; Kay, Jeffrey J.; Kay, Jeffrey J.

Abstract not provided.

Thermal Decomposition of IMX-104: Ingredient Interactions Govern Thermal Insensitivity

Maharrey, Sean P.; Wiese-Smith, Deneille W.; Highley, Aaron M.; Steill, Jeffrey D.; Behrens, Richard B.; Kay, Jeffrey J.

This report summarizes initial studies into the chemical basis of the thermal insensitivity of INMX-104. The work follows upon similar efforts investigating this behavior for another DNAN-based insensitive explosive, IMX-101. The experiments described demonstrate a clear similarity between the ingredient interactions that were shown to lead to the thermal insensitivity observed in IMX-101 and those that are active in IMX-104 at elevated temperatures. Specifically, the onset of decomposition of RDX is shifted to a lower temperature based on the interaction of the RDX with liquid DNAN. This early onset of decomposition dissipates some stored energy that is then unavailable for a delayed, more violent release.

More Details

Toward Multi-scale Modeling and simulation of conduction in heterogeneous materials

Lechman, Jeremy B.; Battaile, Corbett C.; Bolintineanu, Dan S.; Cooper, Marcia A.; Erikson, William W.; Foiles, Stephen M.; Kay, Jeffrey J.; Phinney, Leslie M.; Piekos, Edward S.; Specht, Paul E.; Wixom, Ryan R.; Yarrington, Cole Y.

This report summarizes a project in which the authors sought to develop and deploy: (i) experimental techniques to elucidate the complex, multiscale nature of thermal transport in particle-based materials; and (ii) modeling approaches to address current challenges in predicting performance variability of materials (e.g., identifying and characterizing physical- chemical processes and their couplings across multiple length and time scales, modeling information transfer between scales, and statically and dynamically resolving material structure and its evolution during manufacturing and device performance). Experimentally, several capabilities were successfully advanced. As discussed in Chapter 2 a flash diffusivity capability for measuring homogeneous thermal conductivity of pyrotechnic powders (and beyond) was advanced; leading to enhanced characterization of pyrotechnic materials and properties impacting component development. Chapter 4 describes success for the first time, although preliminary, in resolving thermal fields at speeds and spatial scales relevant to energetic components. Chapter 7 summarizes the first ever (as far as the authors know) application of TDTR to actual pyrotechnic materials. This is the first attempt to actually characterize these materials at the interfacial scale. On the modeling side, new capabilities in image processing of experimental microstructures and direct numerical simulation on complicated structures were advanced (see Chapters 3 and 5). In addition, modeling work described in Chapter 8 led to improved prediction of interface thermal conductance from first principles calculations. Toward the second point, for a model system of packed particles, significant headway was made in implementing numerical algorithms and collecting data to justify the approach in terms of highlighting the phenomena at play and pointing the way forward in developing and informing the kind of modeling approach originally envisioned (see Chapter 6). In both cases much more remains to be accomplished.

More Details
Results 1–25 of 35
Results 1–25 of 35