Publications

197 Results
Skip to search filters

On mixed-integer programming formulations for the unit commitment problem

INFORMS Journal on Computing

Knueven, Ben; Ostrowski, James; Watson, Jean-Paul W.

We provide a comprehensive overview of mixed-integer programming formulations for the unit commitment (UC) problem. UC formulations have been an especially active area of research over the past 12 years due to their practical importance in power grid operations, and this paper serves as a capstone for this line of work. We additionally provide publicly available reference implementations of all formulations examined. We computationally test existing and novel UC formulations on a suite of instances drawn from both academic and real-world data sources. Driven by our computational experience from this and previous work, we contribute some additional formulations for both generator production upper bounds and piecewise linear production costs. By composing new UC formulations using existing components found in the literature and new components introduced in this paper, we demonstrate that performance can be significantly improved—and in the process, we identify a new state-of-the-art UC formulation.

More Details

Models and analysis of fuel switching generation impacts on power system resilience

IEEE Power and Energy Society General Meeting

Wilches-Bernal, Felipe; Knueven, Ben; Staid, Andrea S.; Watson, Jean-Paul W.

This paper presents model formulations for generators that have the ability to use multiple fuels and to switch between them if necessary. These models are used to generate different scenarios of fuel switching penetration from a test power system. With these scenarios, for a severe disruption in the fuel supply to multiple generators, the paper analyzes the effect that fuel switching has on the resilience of the power system. Load not served is used as the proxy metric to evaluate power system resilience. The paper shows that the presence of generators with fuel switching capabilities considerably reduces the amount and duration of the load shed by the system facing the fuel disruption.

More Details

Approximating two-stage chance-constrained programs with classical probability bounds

Optimization Letters

Singh, Bismark S.; Watson, Jean-Paul W.

We consider a joint-chance constraint (JCC) as a union of sets, and approximate this union using bounds from classical probability theory. When these bounds are used in an optimization model constrained by the JCC, we obtain corresponding upper and lower bounds on the optimal objective function value. We compare the strength of these bounds against each other under two different sampling schemes, and observe that a larger correlation between the uncertainties tends to result in more computationally challenging optimization models. We also observe the same set of inequalities to provide the tightest upper and lower bounds in our computational experiments.

More Details

Evaluating demand response opportunities for power systems resilience using MILP and MINLP Formulations

AIChE Journal

Bynum, Michael L.; Castillo, Anya; Watson, Jean-Paul W.; Laird, Carl D.

While peak shaving is commonly used to reduce power costs, chemical process facilities that can reduce power consumption on demand during emergencies (e.g., extreme weather events) bring additional value through improved resilience. For process facilities to effectively negotiate demand response (DR) contracts and make investment decisions regarding flexibility, they need to quantify their additional value to the grid. We present a grid-centric mixed-integer stochastic programming framework to determine the value of DR for improving grid resilience in place of capital investments that can be cost prohibitive for system operators. We formulate problems using both a linear approximation and a nonlinear alternating current power flow model. Our numerical results with both models demonstrate that DR can be used to reduce the capital investment necessary for resilience, increasing the value that chemical process facilities bring through DR. However, the linearized model often underestimates the amount of DR needed in our case studies. Published 2018. This article is a U.S. Government work and is in the public domain in the USA. AIChE J, 65: e16508, 2019.

More Details

Stochastic optimisation with risk aversion for virtual power plant operations: A rolling horizon control

IET Generation, Transmission and Distribution

Castillo, Anya; Flicker, Jack D.; Hansen, Clifford H.; Watson, Jean-Paul W.; Johnson, Jay

While the concept of aggregating and controlling renewable distributed energy resources (DERs) to provide grid services is not new, increasing policy support of DER market participation has driven research and development in algorithms to pool DERs for economically viable market participation. Sandia National Laboratories recently undertook a 3 year research programme to create the components of a real-world virtual power plant (VPP) that can simultaneously participate in multiple markets. The authors' research extends current state-of-the-art rolling horizon control through the application of stochastic programming with risk aversion at various time resolutions. Their rolling horizon control consists of day-ahead optimisation to produce an hourly aggregate schedule for the VPP operator and sub-hourly optimisation for the real-time dispatch of each VPP subresource. Both optimisation routines leverage a two-stage stochastic programme with risk aversion and integrate the most up-to-date forecasts to generate probabilistic scenarios in real operating time. Their results demonstrate the benefits to the VPP operator of constructing a stochastic solution regardless of the weather. In more extreme weather, applying risk optimisation strategies can dramatically increase the financial viability of the VPP. The methodologies presented here can be further tailored for optimal control of any VPP asset fleet and its operational requirements.

More Details

Global Solution Strategies for the Network-Constrained Unit Commitment Problem with AC Transmission Constraints

IEEE Transactions on Power Systems

Liu, Jianfeng; Laird, Carl D.; Scott, Joseph K.; Watson, Jean-Paul W.; Castillo, Anya

We propose a novel global solution algorithm for the network-constrained unit commitment problem that incorporates a nonlinear alternating current (ac) model of the transmission network, which is a nonconvex mixed-integer nonlinear programming problem. Our algorithm is based on the multi-tree global optimization methodology, which iterates between a mixed-integer lower-bounding problem and a nonlinear upper-bounding problem. We exploit the mathematical structure of the unit commitment problem with ac power flow constraints and leverage second-order cone relaxations, piecewise outer approximations, and optimization-based bounds tightening to provide a globally optimal solution at convergence. Numerical results on four benchmark problems illustrate the effectiveness of our algorithm, both in terms of convergence rate and solution quality.

More Details

Stochastic unit commitment performance considering monte carlo wind power scenarios

2018 International Conference on Probabilistic Methods Applied to Power Systems, PMAPS 2018 - Proceedings

Rachunok, Benjamin A.; Staid, Andrea S.; Watson, Jean-Paul W.; Woodruff, David L.; Yang, Dominic

Stochastic versions of the unit commitment problem have been advocated for addressing the uncertainty presented by high levels of wind power penetration. However, little work has been done to study trade-offs between computational complexity and the quality of solutions obtained as the number of probabilistic scenarios is varied. Here, we describe extensive experiments using real publicly available wind power data from the Bonneville Power Administration. Solution quality is measured by re-enacting day-ahead reliability unit commitment (which selects the thermal units that will be used each hour of the next day) and real-time economic dispatch (which determines generation levels) for an enhanced WECC-240 test system in the context of a production cost model simulator; outputs from the simulation, including cost, reliability, and computational performance metrics, are then analyzed. Unsurprisingly, we find that both solution quality and computational difficulty increase with the number of probabilistic scenarios considered. However, we find unexpected transitions in computational difficulty at a specific threshold in the number of scenarios, and report on key trends in solution performance characteristics. Our findings are novel in that we examine these tradeoffs using real-world wind power data in the context of an out-of-sample production cost model simulation, and are relevant for both practitioners interested in deploying and researchers interested in developing scalable solvers for stochastic unit commitment.

More Details

Exploiting Identical Generators in Unit Commitment

IEEE Transactions on Power Systems

Knueven, Ben; Ostrowski, Jim; Watson, Jean-Paul W.

We present sufficient conditions under which thermal generators can be aggregated in mixed-integer linear programming (MILP) formulations of the unit commitment (UC) problem, while maintaining feasibility and optimality for the original disaggregated problem. Aggregating thermal generators with identical characteristics (e.g., minimum/maximum power output, minimum up/down time, and cost curves) into a single unit reduces redundancy in the search space induced by both exact symmetry (permutations of generator schedules) and certain classes of mutually nondominated solutions. We study the impact of aggregation on two large-scale UC instances: one from the academic literature and the other based on real-world operator data. Our computational tests demonstrate that, when present, identical generators can negatively affect the performance of modern MILP solvers on UC formulations. Furthermore, we show that our reformation of the UC MILP through aggregation is an effective method for mitigating this source of computational difficulty.

More Details

A multitree approach for global solution of ACOPF problems using piecewise outer approximations

Computers and Chemical Engineering

Liu, Jianfeng; Bynum, Michael L.; Castillo, Anya; Watson, Jean-Paul W.; Laird, Carl D.

Electricity markets rely on the rapid solution of the optimal power flow (OPF) problem to determine generator power levels and set nodal prices. Traditionally, the OPF problem has been formulated using linearized, approximate models, ignoring nonlinear alternating current (AC) physics. These approaches do not guarantee global optimality or even feasibility in the real ACOPF problem. We introduce an outer-approximation approach to solve the ACOPF problem to global optimality based on alternating solution of upper- and lower-bounding problems. The lower-bounding problem is a piecewise relaxation based on strong second-order cone relaxations of the ACOPF, and these piecewise relaxations are selectively refined at each major iteration through increased variable domain partitioning. Our approach is able to efficiently solve all but one of the test cases considered to an optimality gap below 0.1%. Furthermore, this approach opens the door for global solution of MINLP problems with AC power flow equations.

More Details

Chance-constrained economic dispatch with renewable energy and storage

Computational Optimization and Applications

Cheng, Jianqiang; Chen, Richard L.; Najm, H.N.; Pinar, Ali P.; Safta, Cosmin S.; Watson, Jean-Paul W.

Increasing penetration levels of renewables have transformed how power systems are operated. High levels of uncertainty in production make it increasingly difficulty to guarantee operational feasibility; instead, constraints may only be satisfied with high probability. We present a chance-constrained economic dispatch model that efficiently integrates energy storage and high renewable penetration to satisfy renewable portfolio requirements. Specifically, we require that wind energy contribute at least a prespecified proportion of the total demand and that the scheduled wind energy is deliverable with high probability. We develop an approximate partial sample average approximation (PSAA) framework to enable efficient solution of large-scale chance-constrained economic dispatch problems. Computational experiments on the IEEE-24 bus system show that the proposed PSAA approach is more accurate, closer to the prescribed satisfaction tolerance, and approximately 100 times faster than standard sample average approximation. Finally, the improved efficiency of our PSAA approach enables solution of a larger WECC-240 test system in minutes.

More Details

pyomo.dae: a modeling and automatic discretization framework for optimization with differential and algebraic equations

Mathematical Programming Computation

Nicholson, Bethany L.; Siirola, John D.; Watson, Jean-Paul W.; Zavala, Victor M.; Biegler, Lorenz T.

We describe pyomo.dae, an open source Python-based modeling framework that enables high-level abstract specification of optimization problems with differential and algebraic equations. The pyomo.dae framework is integrated with the Pyomo open source algebraic modeling language, and is available at http://www.pyomo.org. One key feature of pyomo.dae is that it does not restrict users to standard, predefined forms of differential equations, providing a high degree of modeling flexibility and the ability to express constraints that cannot be easily specified in other modeling frameworks. Other key features of pyomo.dae are the ability to specify optimization problems with high-order differential equations and partial differential equations, defined on restricted domain types, and the ability to automatically transform high-level abstract models into finite-dimensional algebraic problems that can be solved with off-the-shelf solvers. Moreover, pyomo.dae users can leverage existing capabilities of Pyomo to embed differential equation models within stochastic and integer programming models and mathematical programs with equilibrium constraint formulations. Collectively, these features enable the exploration of new modeling concepts, discretization schemes, and the benchmarking of state-of-the-art optimization solvers.

More Details

Improving wind power prediction intervals using vendor-supplied probabilistic forecast information

IEEE Power and Energy Society General Meeting

Nitsche, Sabrina; Silva-Monroy, Cesar A.; Staid, Andrea S.; Watson, Jean-Paul W.; Winner, Scott; Woodruff, David L.

We describe experiments concerning enhancing a simple, yet effective method to compute high-accuracy prediction intervals (PIs) for day-ahead wide area wind power forecasts. The resulting PIs are useful for operators and traders, to improve reliability, anticipate threats, and increase situational awareness. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94-AL85000. This work was funded by the Bonneville Power Administration (BPA).

More Details

Constructing probabilistic scenarios for wide-area solar power generation

Solar Energy

Woodruff, David L.; Deride, Julio; Staid, Andrea; Watson, Jean-Paul W.; Slevogt, Gerrit; Silva-Monroy, CĂ©sar

Optimizing thermal generation commitments and dispatch in the presence of high penetrations of renewable resources such as solar energy requires a characterization of their stochastic properties. In this paper, we describe novel methods designed to create day-ahead, wide-area probabilistic solar power scenarios based only on historical forecasts and associated observations of solar power production. Each scenario represents a possible trajectory for solar power in next-day operations with an associated probability computed by algorithms that use historical forecast errors. Scenarios are created by segmentation of historic data, fitting non-parametric error distributions using epi-splines, and then computing specific quantiles from these distributions. Additionally, we address the challenge of establishing an upper bound on solar power output. Our specific application driver is for use in stochastic variants of core power systems operations optimization problems, e.g., unit commitment and economic dispatch. These problems require as input a range of possible future realizations of renewables production. However, the utility of such probabilistic scenarios extends to other contexts, e.g., operator and trader situational awareness. We compare the performance of our approach to a recently proposed method based on quantile regression, and demonstrate that our method performs comparably to this approach in terms of two widely used methods for assessing the quality of probabilistic scenarios: the Energy score and the Variogram score.

More Details

Strengthened SOCP Relaxations for ACOPF with McCormick Envelopes and Bounds Tightening

Computer Aided Chemical Engineering

Bynum, Michael L.; Castillo, Anya; Watson, Jean-Paul W.; Laird, Carl D.

The solution of the Optimal Power Flow (OPF) and Unit Commitment (UC) problems (i.e., determining generator schedules and set points that satisfy demands) is critical for efficient and reliable operation of the electricity grid. For computational efficiency, the alternating current OPF (ACOPF) problem is usually formulated with a linearized transmission model, often referred to as the DCOPF problem. However, these linear approximations do not guarantee global optimality or even feasibility for the true nonlinear alternating current (AC) system. Nonlinear AC power flow models can and should be used to improve model fidelity, but successful global solution of problems with these models requires the availability of strong relaxations of the AC optimal power flow constraints. In this paper, we use McCormick envelopes to strengthen the well-known second-order cone (SOC) relaxation of the ACOPF problem. With this improved relaxation, we can further include tight bounds on the voltages at the reference bus, and this paper demonstrates the effectiveness of this for improved bounds tightening. We present results on the optimality gap of both the base SOC relaxation and our Strengthened SOC (SSOC) relaxation for the National Information and Communications Technology Australia (NICTA) Energy System Test Case Archive (NESTA). For the cases where the SOC relaxation yields an optimality gap more than 0.1 %, the SSOC relaxation with bounds tightening further reduces the optimality gap by an average of 67 % and ultimately reduces the optimality gap to less than 0.1 % for 58 % of all the NESTA cases considered. Stronger relaxations enable more efficient global solution of the ACOPF problem and can improve computational efficiency of MINLP problems with AC power flow constraints, e.g., unit commitment.

More Details

Generating short-term probabilistic wind power scenarios via nonparametric forecast error density estimators

Wind Energy

Staid, Andrea S.; Watson, Jean-Paul W.; Wets, Roger J.B.; Woodruff, David L.

Forecasts of available wind power are critical in key electric power systems operations planning problems, including economic dispatch and unit commitment. Such forecasts are necessarily uncertain, limiting the reliability and cost-effectiveness of operations planning models based on a single deterministic or “point” forecast. A common approach to address this limitation involves the use of a number of probabilistic scenarios, each specifying a possible trajectory of wind power production, with associated probability. We present and analyze a novel method for generating probabilistic wind power scenarios, leveraging available historical information in the form of forecasted and corresponding observed wind power time series. We estimate nonparametric forecast error densities, specifically using epi-spline basis functions, allowing us to capture the skewed and nonparametric nature of error densities observed in real-world data. We then describe a method to generate probabilistic scenarios from these basis functions that allows users to control for the degree to which extreme errors are captured. We compare the performance of our approach to the current state-of-the-art considering publicly available data associated with the Bonneville Power Administration, analyzing aggregate production of a number of wind farms over a large geographic region. Finally, we discuss the advantages of our approach in the context of specific power systems operations planning problems: stochastic unit commitment and economic dispatch. Our methodology is embodied in the joint Sandia–University of California Davis Prescient software package for assessing and analyzing stochastic operations strategies.

More Details

Co-Planning of Investments in Transmission and Merchant Energy Storage

IEEE Transactions on Power Systems

Dvorkin, Yury D.; Fernandez-Blanco, Ricardo F.; Wang, Yisheng W.; Xu, Bolun X.; Kirschen, Daniel K.; Pandzic, Hrvoje P.; Watson, Jean-Paul W.; Silva-Monroy, Cesar A.

We observe suitably located energy storage systems are able to collect significant revenue through spatiotemporal arbitrage in congested transmission networks. However, transmission capacity expansion can significantly reduce or eliminate this source of revenue. Investment decisions by merchant storage operators must, therefore, account for the consequences of potential investments in transmission capacity by central planners. This paper presents a tri-level model to co-optimize merchant electrochemical storage siting and sizing with centralized transmission expansion planning. The upper level takes the merchant storage owner's perspective and aims to maximize the lifetime profits of the storage, while ensuring a given rate of return on investments. The middle level optimizes centralized decisions about transmission expansion. The lower level simulates market clearing. The proposed model is recast as a bi-level equivalent, which is solved using the column-and-constraint generation technique. A case study based on a 240-bus, 448-line testbed of the Western Electricity Coordinating Council interconnection demonstrates the usefulness of the proposed tri-level model.

More Details

Does risk aversion affect transmission and generation planning? A Western North America case study

Energy Economics

Munoz, Francisco D.; van der Weijde, Adriaan H.; Hobbs, Benjamin F.; Watson, Jean-Paul W.

We investigate the effects of risk aversion on optimal transmission and generation expansion planning in a competitive and complete market. To do so, we formulate a stochastic model that minimizes a weighted average of expected transmission and generation costs and their conditional value at risk (CVaR). We show that the solution of this optimization problem is equivalent to the solution of a perfectly competitive risk-averse Stackelberg equilibrium, in which a risk-averse transmission planner maximizes welfare after which risk-averse generators maximize profits. This model is then applied to a 240-bus representation of the Western Electricity Coordinating Council, in which we examine the impact of risk aversion on levels and spatial patterns of generation and transmission investment. Although the impact of risk aversion remains small at an aggregate level, state-level impacts on generation and transmission investment can be significant, which emphasizes the importance of explicit consideration of risk aversion in planning models.

More Details

BBPH: Using progressive hedging within branch and bound to solve multi-stage stochastic mixed integer programs

Operations Research Letters

Barnett, Jason; Watson, Jean-Paul W.; Woodruff, David L.

Progressive hedging, though an effective heuristic for solving stochastic mixed integer programs (SMIPs), is not guaranteed to converge in this case. Here, we describe BBPH, a branch and bound algorithm that uses PH at each node in the search tree such that, given sufficient time, it will always converge to a globally optimal solution. In addition to providing a theoretically convergent “wrapper” for PH applied to SMIPs, computational results demonstrate that for some difficult problem instances branch and bound can find improved solutions after exploring only a few nodes.

More Details

Dynamic Multi-Sensor Multi-Mission Optimal Planning Tool

Valicka, Christopher G.; Rowe, Stephen R.; Zou, Simon Z.; Mitchell, Scott A.; Irelan, William R.; Pollard, Eric L.; Garcia, Deanna G.; Hackebeil, Gabriel A.; Staid, Andrea S.; Rintoul, Mark D.; Watson, Jean-Paul W.; Hart, William E.; Rathinam, Sivakumar R.; Ntaimo, Lewis N.

Remote sensing systems have firmly established a role in providing immense value to commercial industry, scientific exploration, and national security. Continued maturation of sensing technology has reduced the cost of deploying highly-capable sensors while at the same time increased reliance on the information these sensors can provide. The demand for time on these sensors is unlikely to diminish. Coordination of next-generation sensor systems, larger constellations of satellites, unmanned aerial vehicles, ground telescopes, etc. is prohibitively complex for existing heuristics- based scheduling techniques. The project was a two-year collaboration spanning multiple Sandia centers and included a partnership with Texas A&M University. We have developed algorithms and software for collection scheduling, remote sensor field-of-view pointing models, and bandwidth- constrained prioritization of sensor data. Our approach followed best practices from the operations research and computational geometry communities. These models provide several advantages over state of the art techniques. In particular, our approach is more flexible compared to heuristics that tightly couple models and solution techniques. First, our mixed-integer linear models afford a rig- orous analysis so that sensor planners can quantitatively describe a schedule relative to the best possible. Optimal or near-optimal schedules can be produced with commercial solvers in opera- tional run-times. These models can be modified and extended to incorporate different scheduling and resource constraints and objective function definitions. Further, we have extended these mod- els to proactively schedule sensors under weather and ad hoc collection uncertainty. This approach stands in contrast to existing deterministic schedulers which assume a single future weather or ad hoc collection scenario. The field-of-view pointing algorithm produces a mosaic with the fewest number of images required to fully cover a region of interest. The bandwidth-constrained al- gorithms find the highest priority information that can be transmitted. All of these are based on mixed-integer linear programs so that, in the future, collection scheduling, field-of-view, and band- width prioritization can be combined into a single problem. Experiments conducted using the de- veloped models, commercial solvers, and benchmark datasets have demonstrated that proactively scheduling against uncertainty regularly and significantly outperforms deterministic schedulers. Acknowledgement We would like to acknowledge John T. Feddema, Brian N. Post, John H. Ganter, and Swaroop Darbha for providing critical project stewardship and fruitful remote sensing utilization discus- sions. A special thanks to Mohamed S. Ebeida for his contributions to the development of the Maximal Poisson Sampling technique. We would also like to thank Kaarthik Sundar and Jianglei Qin for their significant scheduling algorithm and model development contributions to the project. The authors would like to acknowledge the Sandia LDRD program for their support of this work. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Cor- poration, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

More Details

Ensuring Profitability of Energy Storage

IEEE Transactions on Power Systems

Dvorkin, Yury D.; Fernandez-Blanco, Ricardo F.; Kirschen, Daniel K.; Pandzic, Hrvoje P.; Watson, Jean-Paul W.; Silva-Monroy, Cesar A.

Energy storage (ES) is a pivotal technology for dealing with the challenges caused by the integration of renewable energy sources. It is expected that a decrease in the capital cost of storage will eventually spur the deployment of large amounts of ES. These devices will provide transmission services, such as spatiotemporal energy arbitrage, i.e., storing surplus energy from intermittent renewable sources for later use by loads while reducing the congestion in the transmission network. This paper proposes a bilevel program that determines the optimal location and size of storage devices to perform this spatiotemporal energy arbitrage. This method aims to simultaneously reduce the system-wide operating cost and the cost of investments in ES while ensuring that merchant storage devices collect sufficient profits to fully recover their investment cost. Finally, the usefulness of the proposed method is illustrated using a representative case study of the ISO New England system with a prospective wind generation portfolio.

More Details

Obtaining lower bounds from the progressive hedging algorithm for stochastic mixed-integer programs

Mathematical Programming

Gade, Dinakar; Hackebeil, Gabriel; Ryan, Sarah M.; Watson, Jean-Paul W.; Wets, Roger J.B.; Woodruff, David L.

We present a method for computing lower bounds in the progressive hedging algorithm (PHA) for two-stage and multi-stage stochastic mixed-integer programs. Computing lower bounds in the PHA allows one to assess the quality of the solutions generated by the algorithm contemporaneously. The lower bounds can be computed in any iteration of the algorithm by using dual prices that are calculated during execution of the standard PHA. We report computational results on stochastic unit commitment and stochastic server location problem instances, and explore the relationship between key PHA parameters and the quality of the resulting lower bounds.

More Details

Modeling Bilevel Programs in Pyomo

Hart, William E.; Watson, Jean-Paul W.; Siirola, John D.; Chen, Richard L.

We describe new capabilities for modeling bilevel programs within the Pyomo modeling software. These capabilities include new modeling components that represent subproblems, modeling transformations for re-expressing models with bilevel structure in other forms, and optimize bilevel programs with meta-solvers that apply transformations and then perform op- timization on the resulting model. We illustrate the breadth of Pyomo's modeling capabilities for bilevel programs, and we describe how Pyomo's meta-solvers can perform local and global optimization of bilevel programs.

More Details

Strengthened MILP Formulation for Certain Gas Turbine Unit Commitment Problems

IEEE Transactions on Power Systems

Pan, Kai; Guan, Yongpei; Watson, Jean-Paul W.; Wang, Jianhui

In this paper, we derive a strengthened MILP formulation for certain gas turbine unit commitment problems, in which the ramping rates are no smaller than the minimum generation amounts. This type of gas turbines can usually start-up faster and have a larger ramping rate, as compared to the traditional coal-fired power plants. Recently, the number of this type of gas turbines increases significantly due to affordable gas prices and their scheduling flexibilities to accommodate intermittent renewable energy generation. In this study, several new families of strong valid inequalities are developed to help reduce the computational time to solve these types of problems. Meanwhile, the validity and facet-defining proofs are provided for certain inequalities. Finally, numerical experiments on a modified IEEE 118-bus system and the power system data based on recent studies verify the effectiveness of applying our formulation to model and solve this type of gas turbine unit commitment problems, including reducing the computational time to obtain an optimal solution or obtaining a much smaller optimality gap, as compared to the default CPLEX, when the time limit is reached with no optimal solutions obtained.

More Details

Security-Constrained Unit Commitment with Linearized AC Optimal Power Flow

Watson, Jean-Paul W.; Silva-Monroy, Cesar A.; Castillo, Anya C.; Laird, Carl L.; O'Neill, Richard O.

We propose a mathematical programming-based approach to optimize the security-constrained unit commitment problem with a full AC transmission network representation. Our approach is based on our previously introduced successive linear programming (SLP) approach to solving the non-linear, nonconvex AC optimal power flow (ACOPF) problem. By linearizing the ACOPF, we are able to leverage powerful commercial mixed-integer solvers to iteratively optimize the combined unit commitment plus ACOPF model. We demonstrate our approach on six-bus, IEEE RTS-96, and IEEE 118-bus test systems. We perform a comparative analysis of the relative impacts of singlebus, DC, and AC transmission network models on the unit commitment and dispatch solutions and their associated costs.

More Details

Optimizing Your Options: Extracting the Full Economic Value of Transmission When Planning Under Uncertainty

Electricity Journal

Munoz-Espinoza, Francisco D.; Watson, Jean-Paul W.; Hobbs, Benjamin F.

The anticipated magnitude of needed investments in new transmission infrastructure in the U.S. requires that these be allocated in a way that maximizes the likelihood of achieving society's goals for power system operation. The use of state-of-the-art optimization tools can identify cost-effective investment alternatives, extract more benefits out of transmission expansion portfolios, and account for the huge economic, technology, and policy uncertainties that the power sector faces over the next several decades.

More Details

Integration of progressive hedging and dual decomposition in stochastic integer programs

Operations Research Letters

Guo, Ge; Hackebeil, Gabriel; Ryan, Sarah M.; Watson, Jean-Paul W.; Woodruff, David L.

We present a method for integrating the Progressive Hedging (PH) algorithm and the Dual Decomposition (DD) algorithm of Caroe and Schultz for stochastic mixed-integer programs. Based on the correspondence between lower bounds obtained with PH and DD, a method to transform weights from PH to Lagrange multipliers in DD is found. Fast progress in early iterations of PH speeds up convergence of DD to an exact solution. We report computational results on server location and unit commitment instances.

More Details

A scalable solution framework for stochastic transmission and generation planning problems

Computational Management Science

Munoz-Espinoza, Francisco D.; Watson, Jean-Paul W.

Current commercial software tools for transmission and generation investment planning have limited stochastic modeling capabilities. Because of this limitation, electric power utilities generally rely on scenario planning heuristics to identify potentially robust and cost effective investment plans for a broad range of system, economic, and policy conditions. Several research studies have shown that stochastic models perform significantly better than deterministic or heuristic approaches, in terms of overall costs. However, there is a lack of practical solution techniques to solve such models. In this paper we propose a scalable decomposition algorithm to solve stochastic transmission and generation planning problems, respectively considering discrete and continuous decision variables for transmission and generation investments. Given stochasticity restricted to loads and wind, solar, and hydro power output, we develop a simple scenario reduction framework based on a clustering algorithm, to yield a more tractable model. The resulting stochastic optimization model is decomposed on a scenario basis and solved using a variant of the Progressive Hedging (PH) algorithm. We perform numerical experiments using a 240-bus network representation of the Western Electricity Coordinating Council in the US. Although convergence of PH to an optimal solution is not guaranteed for mixed-integer linear optimization models, we find that it is possible to obtain solutions with acceptable optimality gaps for practical applications. Our numerical simulations are performed both on a commodity workstation and on a high-performance cluster. The results indicate that large-scale problems can be solved to a high degree of accuracy in at most 2 h of wall clock time.

More Details

A Scalable Solution Framework for Stochastic Transmission and Generation Planning Problems. Draft

Munoz-Espinoza, Francisco D.; Watson, Jean-Paul W.

Current commercial software tools for transmission and generation investment planning have limited stochastic modeling capabilities. Because of this limitation, electric power utilities generally rely on scenario planning heuristics to identify potentially robust and cost effective investment plans for a broad range of system, economic, and policy conditions. Several research studies have shown that stochastic models perform significantly better than deterministic or heuristic approaches, in terms of overall costs. However, there is a lack of practical solution approaches to solve such models. In this paper we propose a scalable decomposition algorithm to solve stochastic transmission and generation planning problems, respectively considering discrete and continuous decision variables for transmission and generation investments. Given stochasticity restricted to loads and wind, solar, and hydro power output, we develop a simple scenario reduction framework based on a clustering algorithm, to yield a more tractable model. The resulting stochastic optimization model is decomposed on a scenario basis and solved using a variant of the Progressive Hedging (PH) algorithm. We perform numerical experiments using a 240-bus network representation of the Western Electricity Coordinating Council in the US. Although convergence of PH to an optimal solution is not guaranteed for mixed-integer linear optimization models, we find that it is possible to obtain solutions with acceptable optimality gaps for practical applications. Our numerical simulations are performed both on a commodity workstation and on a high-performance cluster. The results indicate that large-scale problems can be solved to a high degree of accuracy in at most two hours of wall clock time.

More Details

Toward using surrogates to accelerate solution of stochastic electricity grid operations problems

2014 North American Power Symposium, NAPS 2014

Safta, Cosmin S.; Chen, Richard L.; Najm, H.N.; Pinar, Ali P.; Watson, Jean-Paul W.

Stochastic unit commitment models typically handle uncertainties in forecast demand by considering a finite number of realizations from a stochastic process model for loads. Accurate evaluations of expectations or higher moments for the quantities of interest require a prohibitively large number of model evaluations. In this paper we propose an alternative approach based on using surrogate models valid over the range of the forecast uncertainty. We consider surrogate models based on Polynomial Chaos expansions, constructed using sparse quadrature methods. Considering expected generation cost, we demonstrate that the approach can lead to several orders of magnitude reduction in computational cost relative to using Monte Carlo sampling on the original model, for a given target error threshold.

More Details

Encoding and analyzing aerial imagery using geospatial semantic graphs

Rintoul, Mark D.; Watson, Jean-Paul W.; McLendon, William C.; Parekh, Ojas D.

While collection capabilities have yielded an ever-increasing volume of aerial imagery, analytic techniques for identifying patterns in and extracting relevant information from this data have seriously lagged. The vast majority of imagery is never examined, due to a combination of the limited bandwidth of human analysts and limitations of existing analysis tools. In this report, we describe an alternative, novel approach to both encoding and analyzing aerial imagery, using the concept of a geospatial semantic graph. The advantages of our approach are twofold. First, intuitive templates can be easily specified in terms of the domain language in which an analyst converses. These templates can be used to automatically and efficiently search large graph databases, for specific patterns of interest. Second, unsupervised machine learning techniques can be applied to automatically identify patterns in the graph databases, exposing recurring motifs in imagery. We illustrate our approach using real-world data for Anne Arundel County, Maryland, and compare the performance of our approach to that of an expert human analyst.

More Details

Quantifiably secure power grid operation, management, and evolution :

Watson, Jean-Paul W.; Silva-Monroy, Cesar A.

This report summarizes findings and results of the Quantifiably Secure Power Grid Operation, Management, and Evolution LDRD. The focus of the LDRD was to develop decisionsupport technologies to enable rational and quantifiable risk management for two key grid operational timescales: scheduling (day-ahead) and planning (month-to-year-ahead). Risk or resiliency metrics are foundational in this effort. The 2003 Northeast Blackout investigative report stressed the criticality of enforceable metrics for system resiliency the grids ability to satisfy demands subject to perturbation. However, we neither have well-defined risk metrics for addressing the pervasive uncertainties in a renewable energy era, nor decision-support tools for their enforcement, which severely impacts efforts to rationally improve grid security. For day-ahead unit commitment, decision-support tools must account for topological security constraints, loss-of-load (economic) costs, and supply and demand variability especially given high renewables penetration. For long-term planning, transmission and generation expansion must ensure realized demand is satisfied for various projected technological, climate, and growth scenarios. The decision-support tools investigated in this project paid particular attention to tailoriented risk metrics for explicitly addressing high-consequence events. Historically, decisionsupport tools for the grid consider expected cost minimization, largely ignoring risk and instead penalizing loss-of-load through artificial parameters. The technical focus of this work was the development of scalable solvers for enforcing risk metrics. Advanced stochastic programming solvers were developed to address generation and transmission expansion and unit commitment, minimizing cost subject to pre-specified risk thresholds. Particular attention was paid to renewables where security critically depends on production and demand prediction accuracy. To address this concern, powerful filtering techniques for spatio-temporal measurement assimilation were used to develop short-term predictive stochastic models. To achieve uncertaintytolerant solutions, very large numbers of scenarios must be simultaneously considered. One focus of this work was investigating ways of reasonably reducing this number.

More Details

Solving the connected dominating set problem and power dominating set problem by integer programming

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Fan, Neng F.; Watson, Jean-Paul W.

In this paper, we propose several integer programming approaches with a polynomial number of constraints to formulate and solve the minimum connected dominating set problem. Further, we consider both the power dominating set problem - a special dominating set problem for sensor placement in power systems - and its connected version. We propose formulations and algorithms to solve these integer programs, and report results for several power system graphs. © 2012 Springer-Verlag.

More Details

Formulating and analyzing multi-stage sensor placement problems

Water Distribution Systems Analysis 2010 - Proceedings of the 12th International Conference, WDSA 2010

Watson, Jean-Paul W.; Hart, William E.; Woodruff, David L.; Murray, Regan

The optimization of sensor placements is a key aspect of the design of contaminant warning systems for automatically detecting contaminants in water distribution systems. Although researchers have generally assumed that all sensors are placed at the same time, in practice sensor networks will likely grow and evolve over time. For example, limitations for a water utility's budget may dictate an staged, incremental deployment of sensors over many years. We describe optimization formulations of multi-stage sensor placement problems. The objective of these formulations includes an explicit trade-off between the value of the initially deployed and final sensor networks. This trade-off motivates the deployment of sensors in initial stages of the deployment schedule, even though these choices typically lead to a solution that is suboptimal when compared to placing all sensors at once. These multi-stage sensor placement problems can be represented as mixed-integer programs, and we illustrate the impact of this trade-off using standard commercial solvers. We also describe a multi-stage formulation that models budget uncertainty, expressed as a tree of potential budget scenarios through time. Budget uncertainty is used to assess and hedge against risks due to a potentially incomplete deployment of a planned sensor network. This formulation is a multi-stage stochastic mixed-integer program, which are notoriously difficult to solve. We apply standard commercial solvers to small-scale test problems, enabling us to effectively analyze multi-stage sensor placement problems subject to budget uncertainties, and assess the impact of accounting for such uncertainty relative to a deterministic multi-stage model. © 2012 ASCE.

More Details

Optimization of large-scale heterogeneous system-of-systems models

Gray, Genetha A.; Hart, William E.; Hough, Patricia D.; Parekh, Ojas D.; Phillips, Cynthia A.; Siirola, John D.; Swiler, Laura P.; Watson, Jean-Paul W.

Decision makers increasingly rely on large-scale computational models to simulate and analyze complex man-made systems. For example, computational models of national infrastructures are being used to inform government policy, assess economic and national security risks, evaluate infrastructure interdependencies, and plan for the growth and evolution of infrastructure capabilities. A major challenge for decision makers is the analysis of national-scale models that are composed of interacting systems: effective integration of system models is difficult, there are many parameters to analyze in these systems, and fundamental modeling uncertainties complicate analysis. This project is developing optimization methods to effectively represent and analyze large-scale heterogeneous system of systems (HSoS) models, which have emerged as a promising approach for describing such complex man-made systems. These optimization methods enable decision makers to predict future system behavior, manage system risk, assess tradeoffs between system criteria, and identify critical modeling uncertainties.

More Details

Sensor placement for municipal water networks

Phillips, Cynthia A.; Boman, Erik G.; Carr, Robert D.; Hart, William E.; Berry, Jonathan W.; Watson, Jean-Paul W.; Hart, David B.; Mckenna, Sean A.; Riesen, Lee A.

We consider the problem of placing a limited number of sensors in a municipal water distribution network to minimize the impact over a given suite of contamination incidents. In its simplest form, the sensor placement problem is a p-median problem that has structure extremely amenable to exact and heuristic solution methods. We describe the solution of real-world instances using integer programming or local search or a Lagrangian method. The Lagrangian method is necessary for solution of large problems on small PCs. We summarize a number of other heuristic methods for effectively addressing issues such as sensor failures, tuning sensors based on local water quality variability, and problem size/approximation quality tradeoffs. These algorithms are incorporated into the TEVA-SPOT toolkit, a software suite that the US Environmental Protection Agency has used and is using to design contamination warning systems for US municipal water systems.

More Details

Computing confidence intervals on solution costs for stochastic grid generation expansion problems

Watson, Jean-Paul W.

A range of core operations and planning problems for the national electrical grid are naturally formulated and solved as stochastic programming problems, which minimize expected costs subject to a range of uncertain outcomes relating to, for example, uncertain demands or generator output. A critical decision issue relating to such stochastic programs is: How many scenarios are required to ensure a specific error bound on the solution cost? Scenarios are the key mechanism used to sample from the uncertainty space, and the number of scenarios drives computational difficultly. We explore this question in the context of a long-term grid generation expansion problem, using a bounding procedure introduced by Mak, Morton, and Wood. We discuss experimental results using problem formulations independently minimizing expected cost and down-side risk. Our results indicate that we can use a surprisingly small number of scenarios to yield tight error bounds in the case of expected cost minimization, which has key practical implications. In contrast, error bounds in the case of risk minimization are significantly larger, suggesting more research is required in this area in order to achieve rigorous solutions for decision makers.

More Details

Pyomo : Python Optimization Modeling Objects

Siirola, John D.; Watson, Jean-Paul W.; Hart, William E.

The Python Optimization Modeling Objects (Pyomo) package [1] is an open source tool for modeling optimization applications within Python. Pyomo provides an objected-oriented approach to optimization modeling, and it can be used to define symbolic problems, create concrete problem instances, and solve these instances with standard solvers. While Pyomo provides a capability that is commonly associated with algebraic modeling languages such as AMPL, AIMMS, and GAMS, Pyomo's modeling objects are embedded within a full-featured high-level programming language with a rich set of supporting libraries. Pyomo leverages the capabilities of the Coopr software library [2], which integrates Python packages (including Pyomo) for defining optimizers, modeling optimization applications, and managing computational experiments. A central design principle within Pyomo is extensibility. Pyomo is built upon a flexible component architecture [3] that allows users and developers to readily extend the core Pyomo functionality. Through these interface points, extensions and applications can have direct access to an optimization model's expression objects. This facilitates the rapid development and implementation of new modeling constructs and as well as high-level solution strategies (e.g. using decomposition- and reformulation-based techniques). In this presentation, we will give an overview of the Pyomo modeling environment and model syntax, and present several extensions to the core Pyomo environment, including support for Generalized Disjunctive Programming (Coopr GDP), Stochastic Programming (PySP), a generic Progressive Hedging solver [4], and a tailored implementation of Bender's Decomposition.

More Details

PySP : modeling and solving stochastic mixed-integer programs in Python

Watson, Jean-Paul W.

Although stochastic programming is a powerful tool for modeling decision-making under uncertainty, various impediments have historically prevented its widespread use. One key factor involves the ability of non-specialists to easily express stochastic programming problems as extensions of deterministic models, which are often formulated first. A second key factor relates to the difficulty of solving stochastic programming models, particularly the general mixed-integer, multi-stage case. Intricate, configurable, and parallel decomposition strategies are frequently required to achieve tractable run-times. We simultaneously address both of these factors in our PySP software package, which is part of the COIN-OR Coopr open-source Python project for optimization. To formulate a stochastic program in PySP, the user specifies both the deterministic base model and the scenario tree with associated uncertain parameters in the Pyomo open-source algebraic modeling language. Given these two models, PySP provides two paths for solution of the corresponding stochastic program. The first alternative involves writing the extensive form and invoking a standard deterministic (mixed-integer) solver. For more complex stochastic programs, we provide an implementation of Rockafellar and Wets Progressive Hedging algorithm. Our particular focus is on the use of Progressive Hedging as an effective heuristic for approximating general multi-stage, mixed-integer stochastic programs. By leveraging the combination of a high-level programming language (Python) and the embedding of the base deterministic model in that language (Pyomo), we are able to provide completely generic and highly configurable solver implementations. PySP has been used by a number of research groups, including our own, to rapidly prototype and solve difficult stochastic programming problems.

More Details

The TEVA-SPOT toolkit for drinking water contaminant warning system design

World Environmental and Water Resources Congress 2008: Ahupua'a - Proceedings of the World Environmental and Water Resources Congress 2008

Hart, William E.; Berry, Jonathan W.; Boman, Erik G.; Murray, Regan; Phillips, Cynthia A.; Riesen, Lee A.; Watson, Jean-Paul W.

We present the TEVA-SPOT Toolkit, a sensor placement optimization tool developed within the USEPA TEVA program. The TEVA-SPOT Toolkit provides a sensor placement framework that facilitates research in sensor placement optimization and enables the practical application of sensor placement solvers to real-world CWS design applications. This paper provides an overview of its key features, and then illustrates how this tool can be flexibly applied to solve a variety of different types of sensor placement problems. © 2008 ASCE.

More Details

Limited-memory techniques for sensor placement in water distribution networks

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Hart, William E.; Berry, Jonathan W.; Boman, Erik G.; Phillips, Cynthia A.; Riesen, Lee A.; Watson, Jean-Paul W.

The practical utility of optimization technologies is often impacted by factors that reflect how these tools are used in practice, including whether various real-world constraints can be adequately modeled, the sophistication of the analysts applying the optimizer, and related environmental factors (e.g. whether a company is willing to trust predictions from computational models). Other features are less appreciated, but of equal importance in terms of dictating the successful use of optimization. These include the scale of problem instances, which in practice drives the development of approximate solution techniques, and constraints imposed by the target computing platforms. End-users often lack state-of-the-art computers, and thus runtime and memory limitations are often a significant, limiting factor in algorithm design. When coupled with large problem scale, the result is a significant technological challenge. We describe our experience developing and deploying both exact and heuristic algorithms for placing sensors in water distribution networks to mitigate against damage due intentional or accidental introduction of contaminants. The target computing platforms for this application have motivated limited-memory techniques that can optimize large-scale sensor placement problems. © 2008 Springer Berlin Heidelberg.

More Details

A hybrid constraint programming / local search approach to the job-shop scheduling problem

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Watson, Jean-Paul W.; Beck, J.C.

Since their introduction, local search algorithms - and in particular tabu search algorithms - have consistently represented the state-of-the-art in solution techniques for the classical job-shop scheduling problem. This is despite the availability of powerful search and inference techniques for scheduling problems developed by the constraint programming community. In this paper, we introduce a simple hybrid algorithm for job-shop scheduling that leverages both the fast, broad search capabilities of modern tabu search and the scheduling-specific inference capabilities of constraint programming. The hybrid algorithm significantly improves the performance of a state-of-the-art tabu search for the job-shop problem, and represents the first instance in which a constraint programming algorithm obtains performance competitive with the best local search algorithms. Further, the variability in solution quality obtained by the hybrid is significantly lower than that of pure local search algorithms. As an illustrative example, we identify twelve new best-known solutions on Taillard's widely studied benchmark problems. © 2008 Springer-Verlag Berlin Heidelberg.

More Details

LDRD final report : robust analysis of large-scale combinatorial applications

Hart, William E.; Carr, Robert D.; Phillips, Cynthia A.; Watson, Jean-Paul W.

Discrete models of large, complex systems like national infrastructures and complex logistics frameworks naturally incorporate many modeling uncertainties. Consequently, there is a clear need for optimization techniques that can robustly account for risks associated with modeling uncertainties. This report summarizes the progress of the Late-Start LDRD 'Robust Analysis of Largescale Combinatorial Applications'. This project developed new heuristics for solving robust optimization models, and developed new robust optimization models for describing uncertainty scenarios.

More Details

Dakota, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis:version 4.0 developers manual

Brown, Shannon L.; Griffin, Joshua G.; Hough, Patricia D.; Kolda, Tamara G.; Martinez-Canales, Monica L.; Williams, Pamela J.; Adams, Brian M.; Dunlavy, Daniel D.; Swiler, Laura P.; Giunta, Anthony A.; Hart, William E.; Watson, Jean-Paul W.; Eddy, John P.

The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and extensible interface between simulation codes and iterative analysis methods. DAKOTA contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, reliability, and stochastic finite element methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a developers manual for the DAKOTA software and describes the DAKOTA class hierarchies and their interrelationships. It derives directly from annotation of the actual source code and provides detailed class documentation, including all member functions and attributes.

More Details

DAKOTA, a multilevel parellel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis:version 4.0 uers's manual

Swiler, Laura P.; Giunta, Anthony A.; Hart, William E.; Watson, Jean-Paul W.; Eddy, John P.; Griffin, Joshua G.; Hough, Patricia D.; Kolda, Tamara G.; Martinez-Canales, Monica L.; Williams, Pamela J.; Eldred, Michael S.; Brown, Shannon L.; Adams, Brian M.; Dunlavy, Daniel D.

The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and extensible interface between simulation codes and iterative analysis methods. DAKOTA contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, reliability, and stochastic finite element methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a user's manual for the DAKOTA software and provides capability overviews and procedures for software execution, as well as a variety of example studies.

More Details

DAKOTA, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis:version 4.0 reference manual

Brown, Shannon L.; Griffin, Joshua G.; Hough, Patricia D.; Kolda, Tamara G.; Martinez-Canales, Monica L.; Williams, Pamela J.; Adams, Brian M.; Dunlavy, Daniel D.; Swiler, Laura P.; Giunta, Anthony A.; Hart, William E.; Watson, Jean-Paul W.; Eddy, John P.

The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and extensible interface between simulation codes and iterative analysis methods. DAKOTA contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, reliability, and stochastic finite element methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a reference manual for the commands specification for the DAKOTA software, providing input overviews, option descriptions, and example specifications.

More Details

Deconstructing Nowicki and Smutnickis i-TSAB tabu search algorithm for the job-shop scheduling problem

Proposed for publication in Computers and Operations Research.

Watson, Jean-Paul W.

Over the last decade and a half, tabu search algorithms for machine scheduling have gained a near-mythical reputation by consistently equaling or establishing state-of-the-art performance levels on a range of academic and real-world problems. Yet, despite these successes, remarkably little research has been devoted to developing an understanding of why tabu search is so effective on this problem class. In this paper, we report results that provide significant progress in this direction. We consider Nowicki and Smutnicki's i-TSAB tabu search algorithm, which represents the current state-of-the-art for the makespan-minimization form of the classical jobshop scheduling problem. Via a series of controlled experiments, we identify those components of i-TSAB that enable it to achieve state-of-the-art performance levels. In doing so, we expose a number of misconceptions regarding the behavior and/or benefits of tabu search and other local search metaheuristics for the job-shop problem. Our results also serve to focus future research, by identifying those specific directions that are most likely to yield further improvements in performance.

More Details

Deciphering the genetic regulatory code using an inverse error control coding framework

May, Elebeoba E.; Johnston, Anna M.; Watson, Jean-Paul W.; Hart, William E.; Rintoul, Mark D.

We have found that developing a computational framework for reconstructing error control codes for engineered data and ultimately for deciphering genetic regulatory coding sequences is a challenging and uncharted area that will require advances in computational technology for exact solutions. Although exact solutions are desired, computational approaches that yield plausible solutions would be considered sufficient as a proof of concept to the feasibility of reverse engineering error control codes and the possibility of developing a quantitative model for understanding and engineering genetic regulation. Such evidence would help move the idea of reconstructing error control codes for engineered and biological systems from the high risk high payoff realm into the highly probable high payoff domain. Additionally this work will impact biological sensor development and the ability to model and ultimately develop defense mechanisms against bioagents that can be engineered to cause catastrophic damage. Understanding how biological organisms are able to communicate their genetic message efficiently in the presence of noise can improve our current communication protocols, a continuing research interest. Towards this end, project goals include: (1) Develop parameter estimation methods for n for block codes and for n, k, and m for convolutional codes. Use methods to determine error control (EC) code parameters for gene regulatory sequence. (2) Develop an evolutionary computing computational framework for near-optimal solutions to the algebraic code reconstruction problem. Method will be tested on engineered and biological sequences.

More Details

Validation and assessment of integer programming sensor placement models

Berry, Jonathan W.; Hart, William E.; Phillips, Cynthia A.; Watson, Jean-Paul W.

We consider the accuracy of predictions made by integer programming (IP) models of sensor placement for water security applications. We have recently shown that IP models can be used to find optimal sensor placements for a variety of different performance criteria (e.g. minimize health impacts and minimize time to detection). However, these models make a variety of simplifying assumptions that might bias the final solution. We show that our IP modeling assumptions are similar to models developed for other sensor placement methodologies, and thus IP models should give similar predictions. However, this discussion highlights that there are significant differences in how temporal effects are modeled for sensor placement. We describe how these modeling assumptions can impact sensor placements.

More Details

Linking search space structure, run-time dynamics, and problem difficulty : a step toward demystifying tabu search

Proposed for publication in the Journal of Artificial Intelligence Research.

Watson, Jean-Paul W.

Tabu search is one of the most effective heuristics for locating high-quality solutions to a diverse array of NP-hard combinatorial optimization problems. Despite the widespread success of tabu search, researchers have a poor understanding of many key theoretical aspects of this algorithm, including models of the high-level run-time dynamics and identification of those search space features that influence problem difficulty. We consider these questions in the context of the job-shop scheduling problem (JSP), a domain where tabu search algorithms have been shown to be remarkably effective. Previously, we demonstrated that the mean distance between random local optima and the nearest optimal solution is highly correlated with problem difficulty for a well-known tabu search algorithm for the JSP introduced by Taillard. In this paper, we discuss various shortcomings of this measure and develop a new model of problem difficulty that corrects these deficiencies. We show that Taillard's algorithm can be modeled with high fidelity as a simple variant of a straightforward random walk. The random walk model accounts for nearly all of the variability in the cost required to locate both optimal and sub-optimal solutions to random JSPs, and provides an explanation for differences in the difficulty of random versus structured JSPs. Finally, we discuss and empirically substantiate two novel predictions regarding tabu search algorithm behavior. First, the method for constructing the initial solution is highly unlikely to impact the performance of tabu search. Second, tabu tenure should be selected to be as small as possible while simultaneously avoiding search stagnation; values larger than necessary lead to significant degradations in performance.

More Details

Sensor placement in municipal water networks

Proposed for publication in the Journal of Water Resources Planning and Management.

Hart, William E.; Phillips, Cynthia A.; Berry, Jonathan W.; Watson, Jean-Paul W.

We present a model for optimizing the placement of sensors in municipal water networks to detect maliciously injected contaminants. An optimal sensor configuration minimizes the expected fraction of the population at risk. We formulate this problem as a mixed-integer program, which can be solved with generally available solvers. We find optimal sensor placements for three test networks with synthetic risk and population data. Our experiments illustrate that this formulation can be solved relatively quickly and that the predicted sensor configuration is relatively insensitive to uncertainties in the data used for prediction.

More Details

Detection and reconstruction of error control codes for engineered and biological regulatory systems

May, Elebeoba E.; May, Elebeoba E.; Johnston, Anna M.; Hart, William E.; Watson, Jean-Paul W.; Pryor, Richard J.; Rintoul, Mark D.

A fundamental challenge for all communication systems, engineered or living, is the problem of achieving efficient, secure, and error-free communication over noisy channels. Information theoretic principals have been used to develop effective coding theory algorithms to successfully transmit information in engineering systems. Living systems also successfully transmit biological information through genetic processes such as replication, transcription, and translation, where the genome of an organism is the contents of the transmission. Decoding of received bit streams is fairly straightforward when the channel encoding algorithms are efficient and known. If the encoding scheme is unknown or part of the data is missing or intercepted, how would one design a viable decoder for the received transmission? For such systems blind reconstruction of the encoding/decoding system would be a vital step in recovering the original message. Communication engineers may not frequently encounter this situation, but for computational biologists and biotechnologist this is an immediate challenge. The goal of this work is to develop methods for detecting and reconstructing the encoder/decoder system for engineered and biological data. Building on Sandia's strengths in discrete mathematics, algorithms, and communication theory, we use linear programming and will use evolutionary computing techniques to construct efficient algorithms for modeling the coding system for minimally errored engineered data stream and genomic regulatory DNA and RNA sequences. The objective for the initial phase of this project is to construct solid parallels between biological literature and fundamental elements of communication theory. In this light, the milestones for FY2003 were focused on defining genetic channel characteristics and providing an initial approximation for key parameters, including coding rate, memory length, and minimum distance values. A secondary objective addressed the question of determining similar parameters for a received, noisy, error-control encoded data set. In addition to these goals, we initiated exploration of algorithmic approaches to determine if a data set could be approximated with an error-control code and performed initial investigations into optimization based methodologies for extracting the encoding algorithm given the coding rate of an encoded noise-free and noisy data stream.

More Details

An analysis of iterated local search for job-shop scheduling

Watson, Jean-Paul W.; Watson, Jean-Paul W.

Iterated local search, or ILS, is among the most straightforward meta-heuristics for local search. ILS employs both small-step and large-step move operators. Search proceeds via iterative modifications to a single solution, in distinct alternating phases. In the first phase, local neighborhood search (typically greedy descent) is used in conjunction with the small-step operator to transform solutions into local optima. In the second phase, the large-step operator is applied to generate perturbations to the local optima obtained in the first phase. Ideally, when local neighborhood search is applied to the resulting solution, search will terminate at a different local optimum, i.e., the large-step perturbations should be sufficiently large to enable escape from the attractor basins of local optima. ILS has proven capable of delivering excellent performance on numerous N P-Hard optimization problems. [LMS03]. However, despite its implicity, very little is known about why ILS can be so effective, and under what conditions. The goal of this paper is to advance the state-of-the-art in the analysis of meta-heuristics, by providing answers to this research question. They focus on characterizing both the relationship between the structure of the underlying search space and ILS performance, and the dynamic behavior of ILS. The analysis proceeds in the context of the job-shop scheduling problem (JSP) [Tai94]. They begin by demonstrating that the attractor basins of local optima in the JSP are surprisingly weak, and can be escaped with high probaiblity by accepting a short random sequence of less-fit neighbors. this result is used to develop a new ILS algorithms for the JSP, I-JAR, whose performance is competitive with tabu search on difficult benchmark instances. They conclude by developing a very accurate behavioral model of I-JAR, which yields significant insights into the dynamics of search. The analysis is based on a set of 100 random 10 x 10 problem instances, in addition to some widely used benchmark instances. Both I-JAR and the tabu search algorithm they consider are based on the N1 move operator introduced by van Laarhoven et al. [vLAL92]. The N1 operator induces a connected search space, such that it is always possible to move from an arbitrary solution to an optimal solution; this property is integral to the development of a behavioral model of I-JAR. However, much of the analysis generalizes to other move operators, including that of Nowicki and Smutnick [NS96]. Finally the models are based on the distance between two solutions, which they take as the well-known disjunctive graph distance [MBK99].

More Details
197 Results
197 Results