Publications

Results 1–25 of 197
Skip to search filters

On mixed-integer programming formulations for the unit commitment problem

INFORMS Journal on Computing

Knueven, Ben; Ostrowski, James; Watson, Jean-Paul W.

We provide a comprehensive overview of mixed-integer programming formulations for the unit commitment (UC) problem. UC formulations have been an especially active area of research over the past 12 years due to their practical importance in power grid operations, and this paper serves as a capstone for this line of work. We additionally provide publicly available reference implementations of all formulations examined. We computationally test existing and novel UC formulations on a suite of instances drawn from both academic and real-world data sources. Driven by our computational experience from this and previous work, we contribute some additional formulations for both generator production upper bounds and piecewise linear production costs. By composing new UC formulations using existing components found in the literature and new components introduced in this paper, we demonstrate that performance can be significantly improved—and in the process, we identify a new state-of-the-art UC formulation.

More Details

Models and analysis of fuel switching generation impacts on power system resilience

IEEE Power and Energy Society General Meeting

Wilches-Bernal, Felipe; Knueven, Ben; Staid, Andrea S.; Watson, Jean-Paul W.

This paper presents model formulations for generators that have the ability to use multiple fuels and to switch between them if necessary. These models are used to generate different scenarios of fuel switching penetration from a test power system. With these scenarios, for a severe disruption in the fuel supply to multiple generators, the paper analyzes the effect that fuel switching has on the resilience of the power system. Load not served is used as the proxy metric to evaluate power system resilience. The paper shows that the presence of generators with fuel switching capabilities considerably reduces the amount and duration of the load shed by the system facing the fuel disruption.

More Details

Approximating two-stage chance-constrained programs with classical probability bounds

Optimization Letters

Singh, Bismark S.; Watson, Jean-Paul W.

We consider a joint-chance constraint (JCC) as a union of sets, and approximate this union using bounds from classical probability theory. When these bounds are used in an optimization model constrained by the JCC, we obtain corresponding upper and lower bounds on the optimal objective function value. We compare the strength of these bounds against each other under two different sampling schemes, and observe that a larger correlation between the uncertainties tends to result in more computationally challenging optimization models. We also observe the same set of inequalities to provide the tightest upper and lower bounds in our computational experiments.

More Details

Evaluating demand response opportunities for power systems resilience using MILP and MINLP Formulations

AIChE Journal

Bynum, Michael L.; Castillo, Anya; Watson, Jean-Paul W.; Laird, Carl D.

While peak shaving is commonly used to reduce power costs, chemical process facilities that can reduce power consumption on demand during emergencies (e.g., extreme weather events) bring additional value through improved resilience. For process facilities to effectively negotiate demand response (DR) contracts and make investment decisions regarding flexibility, they need to quantify their additional value to the grid. We present a grid-centric mixed-integer stochastic programming framework to determine the value of DR for improving grid resilience in place of capital investments that can be cost prohibitive for system operators. We formulate problems using both a linear approximation and a nonlinear alternating current power flow model. Our numerical results with both models demonstrate that DR can be used to reduce the capital investment necessary for resilience, increasing the value that chemical process facilities bring through DR. However, the linearized model often underestimates the amount of DR needed in our case studies. Published 2018. This article is a U.S. Government work and is in the public domain in the USA. AIChE J, 65: e16508, 2019.

More Details

Stochastic optimisation with risk aversion for virtual power plant operations: A rolling horizon control

IET Generation, Transmission and Distribution

Castillo, Anya; Flicker, Jack D.; Hansen, Clifford H.; Watson, Jean-Paul W.; Johnson, Jay

While the concept of aggregating and controlling renewable distributed energy resources (DERs) to provide grid services is not new, increasing policy support of DER market participation has driven research and development in algorithms to pool DERs for economically viable market participation. Sandia National Laboratories recently undertook a 3 year research programme to create the components of a real-world virtual power plant (VPP) that can simultaneously participate in multiple markets. The authors' research extends current state-of-the-art rolling horizon control through the application of stochastic programming with risk aversion at various time resolutions. Their rolling horizon control consists of day-ahead optimisation to produce an hourly aggregate schedule for the VPP operator and sub-hourly optimisation for the real-time dispatch of each VPP subresource. Both optimisation routines leverage a two-stage stochastic programme with risk aversion and integrate the most up-to-date forecasts to generate probabilistic scenarios in real operating time. Their results demonstrate the benefits to the VPP operator of constructing a stochastic solution regardless of the weather. In more extreme weather, applying risk optimisation strategies can dramatically increase the financial viability of the VPP. The methodologies presented here can be further tailored for optimal control of any VPP asset fleet and its operational requirements.

More Details

Global Solution Strategies for the Network-Constrained Unit Commitment Problem with AC Transmission Constraints

IEEE Transactions on Power Systems

Liu, Jianfeng; Laird, Carl D.; Scott, Joseph K.; Watson, Jean-Paul W.; Castillo, Anya

We propose a novel global solution algorithm for the network-constrained unit commitment problem that incorporates a nonlinear alternating current (ac) model of the transmission network, which is a nonconvex mixed-integer nonlinear programming problem. Our algorithm is based on the multi-tree global optimization methodology, which iterates between a mixed-integer lower-bounding problem and a nonlinear upper-bounding problem. We exploit the mathematical structure of the unit commitment problem with ac power flow constraints and leverage second-order cone relaxations, piecewise outer approximations, and optimization-based bounds tightening to provide a globally optimal solution at convergence. Numerical results on four benchmark problems illustrate the effectiveness of our algorithm, both in terms of convergence rate and solution quality.

More Details

Stochastic unit commitment performance considering monte carlo wind power scenarios

2018 International Conference on Probabilistic Methods Applied to Power Systems, PMAPS 2018 - Proceedings

Rachunok, Benjamin A.; Staid, Andrea S.; Watson, Jean-Paul W.; Woodruff, David L.; Yang, Dominic

Stochastic versions of the unit commitment problem have been advocated for addressing the uncertainty presented by high levels of wind power penetration. However, little work has been done to study trade-offs between computational complexity and the quality of solutions obtained as the number of probabilistic scenarios is varied. Here, we describe extensive experiments using real publicly available wind power data from the Bonneville Power Administration. Solution quality is measured by re-enacting day-ahead reliability unit commitment (which selects the thermal units that will be used each hour of the next day) and real-time economic dispatch (which determines generation levels) for an enhanced WECC-240 test system in the context of a production cost model simulator; outputs from the simulation, including cost, reliability, and computational performance metrics, are then analyzed. Unsurprisingly, we find that both solution quality and computational difficulty increase with the number of probabilistic scenarios considered. However, we find unexpected transitions in computational difficulty at a specific threshold in the number of scenarios, and report on key trends in solution performance characteristics. Our findings are novel in that we examine these tradeoffs using real-world wind power data in the context of an out-of-sample production cost model simulation, and are relevant for both practitioners interested in deploying and researchers interested in developing scalable solvers for stochastic unit commitment.

More Details
Results 1–25 of 197
Results 1–25 of 197