SOLAR THERMOCHEMICAL HYDROGEN PRODUCTION (STCH) QUARTERLY PROGRESS REPORT FOR JULY 1 2011-SEPTEMBER 30 2011
Abstract not provided.
Abstract not provided.
Abstract not provided.
The work reported here supports the efforts of the Market Transformation element of the DOE Fuel Cell Technology Program. The portfolio includes hydrogen technologies, as well as fuel cell technologies. The objective of this work is to model the use of bulk hydrogen storage, integrated with intermittent renewable energy production of hydrogen via electrolysis, used to generate grid-quality electricity. In addition the work determines cost-effective scale and design characteristics and explores potential attractive business models.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
The use of risk information in establishing code and standard requirements enables: (1) An adequate and appropriate level of safety; and (2) Deployment of hydrogen facilities are as safe as gasoline facilities. This effort provides a template for clear and defensible regulations, codes, and standards that can enable international market transformation.
Abstract not provided.
No concerns for Hydrogen-Enriched Compressed Natural gas (HCNG) in steel storage tanks if material strength is < 950 MPa. Recommend evaluating H{sub 2}-assisted fatigue cracking in higher strength steels at H{sub 2} partial pressure in blend. Limited fatigue testing on higher strength steel cylinders in H{sub 2} shows promising results. Impurities in Compressed Natural Gas (CNG) (e.g., CO) may provide extrinsic mechanism for mitigating H{sub 2}-assisted fatigue cracking in steel tanks.
Abstract not provided.
Abstract not provided.
Abstract not provided.
The purpose of the DOE Metal Hydride Center of Excellence (MHCoE) is to develop hydrogen storage materials with engineering properties that allow the use of these materials in a way that satisfies the DOE/FreedomCAR Program system requirements for automotive hydrogen storage. The Center is a multidisciplinary and collaborative effort with technical interactions divided into two broad areas: (1) mechanisms and modeling (which provide a theoretically driven basis for pursuing new materials) and (2) materials development (in which new materials are synthesized and characterized). Driving all of this work are the hydrogen storage system specifications outlined by the FreedomCAR Program for 2010 and 2015. The organization of the MHCoE during the past year is show in Figure 1. During the past year, the technical work was divided into four project areas. The purpose of the project areas is to organize the MHCoE technical work along appropriate and flexible technical lines. The four areas summarized are: (1) Project A - Destabilized Hydrides, The objective of this project is to controllably modify the thermodynamics of hydrogen sorption reactions in light metal hydrides using hydride destabilization strategies; (2) Project B - Complex Anionic Materials, The objective is to predict and synthesize highly promising new anionic hydride materials; (3) Project C - Amides/Imides Storage Materials, The objective of Project C is to assess the viability of amides and imides (inorganic materials containing NH{sub 2} and NH moieties, respectively) for onboard hydrogen storage; and (4) Project D - Alane, AlH{sub 3}, The objective of Project D is to understand the sorption and regeneration properties of AlH{sub 3} for hydrogen storage.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
International Journal of Hydrogen Energy
The addition of hydrogen to the natural gas feedstocks of midsize (30-150 MW) gas turbines was analyzed as a method of reducing nitrogen oxides (NOx) and CO2 emissions. In particular, the costs of hydrogen addition were evaluated against the combined costs for other current NOx and CO2 emissions control technologies for both existing and new systems to determine its benefits and market feasibility. Markets for NOx emissions credits currently exist in California and the Northeast States and are expected to grow. Although regulations are not currently in place in the United States, several other countries have implemented carbon tax and carbon credit programs. The analysis thus assumes that the United States adopts future legislation similar to these programs. Therefore, potential sale of emissions credits for volunteer retrofits was also included in the study. It was found that hydrogen addition is a competitive alternative to traditional emissions abatement techniques under certain conditions. The existence of carbon credits shifts the system economics in favor of hydrogen addition. © 2007.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
We have synthesized defect-free aluminosilicate and silicalite zeolite thin films supported on commercially available alpha and gamma alumina disk substrates. We have also built a permeation unit that can test both pure and mixed gases from room temperature to 250 C. Results indicate fluxes on the order of 10{sup -6} to 10{sup -7} mole/(m{sup 2}Pa sec) and excellent separation values for H{sub 2} or CO{sub 2}. For the Al/Si membrane: H{sub 2}/N{sub 2} {ge} 61, H{sub 2}/CO{sub 2} {ge} 80, H{sub 2}/CH{sub 4} = 7, CH{sub 4}/CO{sub 2} {ge} 11; for the TPA/Si membrane: H{sub 2}/N{sub 2} {ge} 61, H{sub 2}/CO{sub 2} {ge} 80, H{sub 2}/CH{sub 4} = 7, CH{sub 4}/CO{sub 2} {ge} 11. Our data show that we can use the adsorption ability plus the effective pore diameter of the zeolite to 'tune' the selectivity of the membrane. Another avenue of research is into bulk novel molecular sieve materials, with the goal of 'tuning' pore sizes to molecular sieving needs. A novel crystalline 12-ring microporous gallophosphate material is described.
Abstract not provided.