Publications

Results 1–200 of 211
Skip to search filters

Networked Microgrid Cybersecurity Architecture Design Guide: A New Jersey TRANSITGRID Use Case

Sangoleye, Fisayo S.; Johnson, Jay; Chavez, Adrian R.; Tsiropoulou, Eirini E.; Marton, Nicholas L.; Hentz, Charles R.; Yannarelli, Albert Y.

Microgrids require reliable communication systems for equipment control, power delivery optimization, and operational visibility. To maintain secure communications, Microgrid Operational Technology (OT) networks must be defensible and cyber-resilient. The communication network must be carefully architected with appropriate cyber-hardening technologies to provide security defenders the data, analytics, and response capabilities to quickly mitigate malicious and accidental cyberattacks. In this work, we outline several best practices and technologies that can support microgrid operations (e.g., intrusion detection and monitoring systems, response tools, etc.). Then we apply these recommendations to the New Jersey TRANSITGRID use case to demonstrate how they would be deployed in practice.

More Details

Centralized and Decentralized Distributed Energy Resource Access Control Implementation Considerations

Energies

Fragkos, Georgios F.; Johnson, Jay; Tsiropoulou, Eirini E.

A global transition to power grids with high penetrations of renewable energy generation is being driven in part by rapid installations of distributed energy resources (DER). New DER equipment includes standardized IEEE 1547-2018 communication interfaces and proprietary communications capabilities. Interoperable DER provides new monitoring and control capabilities. The existence of multiple entities with different roles and responsibilities within the DER ecosystem makes the Access Control (AC) mechanism necessary. In this paper, we introduce and compare two novel architectures, which provide a Role-Based Access Control (RBAC) service to the DER ecosystem’s entities. Selecting an appropriate RBAC technology is important for the RBAC administrator and users who request DER access authorization. The first architecture is centralized, based on the OpenLDAP, an open source implementation of the Lightweight Directory Access Protocol (LDAP). The second approach is decentralized, based on a private Ethereum blockchain test network, where the RBAC model is stored and efficiently retrieved via the utilization of a single Smart Contract. We have implemented two end-to-end Proofs-of-Concept (PoC), respectively, to offer the RBAC service to the DER entities as web applications. Finally, an evaluation of the two approaches is presented, highlighting the key speed, cost, usability, and security features.

More Details

Dynamic Role-Based Access Control Policy for Smart Grid Applications: An Offline Deep Reinforcement Learning Approach

IEEE Transactions on Human-Machine Systems

Fragkos, Georgios; Johnson, Jay; Tsiropoulou, Eirini E.

Role-based access control (RBAC) is adopted in the information and communication technology domain for authentication purposes. However, due to a very large number of entities within organizational access control (AC) systems, static RBAC management can be inefficient, costly, and can lead to cybersecurity threats. In this article, a novel hybrid RBAC model is proposed, based on the principles of offline deep reinforcement learning (RL) and Bayesian belief networks. The considered framework utilizes a fully offline RL agent, which models the behavioral history of users as a Bayesian belief-based trust indicator. Thus, the initial static RBAC policy is improved in a dynamic manner through off-policy learning while guaranteeing compliance of the internal users with the security rules of the system. By deploying our implementation within the smart grid domain and specifically within a Distributed Energy Resources (DER) ecosystem, we provide an end-To-end proof of concept of our model. Finally, detailed analysis and evaluation regarding the offline training phase of the RL agent are provided, while the online deployment of the hybrid RL-based RBAC model into the DER ecosystem highlights its key operation features and salient benefits over traditional RBAC models.

More Details

Cybersecurity for Electric Vehicle Charging Infrastructure

Johnson, Jay; Anderson, Benjamin R.; Wright, Brian J.; Quiroz, Jimmy E.; Berg, Timothy M.; Graves, Russell G.; Daley, Josh D.; Phan, Kandy P.; Kunz, Micheal K.; Pratt, Rick P.; Carroll, Tom C.; ONeil, Lori R.; Dindlebeck, Brian D.; Maloney, Patrick M.; O'Brien, David J.; Gotthold, David G.; Varriale, Roland V.; Bohn, Ted B.; Hardy, Keith H.

As the U.S. electrifies the transportation sector, cyberattacks targeting vehicle charging could impact several critical infrastructure sectors including power systems, manufacturing, medical services, and agriculture. This is a growing area of concern as charging stations increase power delivery capabilities and must communicate to authorize charging, sequence the charging process, and manage load (grid operators, vehicles, OEM vendors, charging network operators, etc.). The research challenges are numerous and complicated because there are many end users, stakeholders, and software and equipment vendors interests involved. Poorly implemented electric vehicle supply equipment (EVSE), electric vehicle (EV), or grid operator communication systems could be a significant risk to EV adoption because the political, social, and financial impact of cyberattacks — or public perception of such — would ripple across the industry and produce lasting effects. Unfortunately, there is currently no comprehensive EVSE cybersecurity approach and limited best practices have been adopted by the EV/EVSE industry. There is an incomplete industry understanding of the attack surface, interconnected assets, and unsecured inter faces. Comprehensive cybersecurity recommendations founded on sound research are necessary to secure EV charging infrastructure. This project provided the power, security, and automotive industry with a strong technical basis for securing this infrastructure by developing threat models, determining technology gaps, and identifying or developing effective countermeasures. Specifically, the team created a cybersecurity threat model and performed a technical risk assessment of EVSE assets across multiple manufacturers and vendors, so that automotive, charging, and utility stakeholders could better protect customers, vehicles, and power systems in the face of new cyber threats.

More Details

Review of Electric Vehicle Charger Cybersecurity Vulnerabilities, Potential Impacts, and Defenses

Energies

Johnson, Jay; Berg, Timothy M.; Anderson, Benjamin; Wright, Brian J.

Worldwide growth in electric vehicle use is prompting new installations of private and public electric vehicle supply equipment (EVSE). EVSE devices support the electrification of the transportation industry but also represent a linchpin for power systems and transportation infras-tructures. Cybersecurity researchers have recently identified several vulnerabilities that exist in EVSE devices, communications to electric vehicles (EVs), and upstream services, such as EVSE vendor cloud services, third party systems, and grid operators. The potential impact of attacks on these systems stretches from localized, relatively minor effects to long-term national disruptions. Fortunately, there is a strong and expanding collection of information technology (IT) and operational technology (OT) cybersecurity best practices that may be applied to the EVSE environment to secure this equipment. In this paper, we survey publicly disclosed EVSE vulnerabilities, the impact of EV charger cyberattacks, and proposed security protections for EV charging technologies.

More Details

Distributed Energy Resource Cybersecurity Standards Development [Final Report]

Johnson, Jay; Onunkwo, Ifeoma O.; Saleem, Danish S.; Hupp, William H.; Peterson, Jordan P.; Cryar, Ryan C.

Currently, the solar industry is operating with little application-specific guidance on how to protect and defend their systems from cyberattacks. This 3-year Department of Energy (DOE) Solar Energy Technologies Office-funded project helped advance the distributed energy resource (DER) cybersecurity state-of-the-art by (a) bolstering industry awareness of cybersecurity concepts, risks, and solutions through a webinar series and (b) developing recommendations for DER cybersecurity standards to improve the security performance of DER products and networks. Drafting DER standards is a lengthy, consensus-based process requiring effective leadership and stakeholder participation. This project was designed to reduce standard and guide writing times by creating well-researched recommendations that could act as a starting place for national and international standards development organizations. Working within the SunSpec/Sandia DER Cybersecurity Workgroup, the team produced guidance for DER cybersecurity certification, communication protocol standards, network architecture s, access control, and patching. The team also led subgroups within the IEEE P 1547.3 Guide for Cybersecurity of Distributed Energy Resources Interconnected with Electric Power Systems committee and pushed a draft to ballot in October 2021.

More Details

Commercial pv inverter ieee 1547.1 ride-through assessments using an automated phil test platform

Energies

Ninad, Nayeem; Apablaza-Arancibia, Estefan; Bui, Michel; Johnson, Jay

As more countries seek solutions to their de-carbonization targets using renewable energy (RE) technologies, interconnection standards and national grid codes for distributed energy resources (DER) are being updated to support higher penetrations of RE and improve grid stability. Common grid-code revisions mandate DER devices, such as solar inverters and energy storage systems, ride-through (RT) voltage and frequency disturbances. This is necessary because as the percentage of generation from DER increases, there is a greater risk power system faults will cause many or all DER to trip, triggering a substantial load-generation imbalance and possible cascading blackout. This paper demonstrates for the first time a methodology to verify commercial DER devices are compliant to new voltage, frequency, and rate of change of frequency (ROCOF) RT requirements established in IEEE Std. 1547-2018. The methodology incorporates a software automation tool, called the SunSpec System Validation Platform (SVP), in combination with a hardware-in-the-loop (HIL) system to execute the IEEE Std. 1547.1-2020 RT test protocols. In this paper, the approach is validated with two commercial photovoltaic inverters, the test results are analyzed for compliance, and improvements to the test procedure are suggested.

More Details

Recommendations for Distributed Energy Resource Patching

Johnson, Jay

While computer systems, software applications, and operational technology (OT)/Industrial Control System (ICS) devices are regularly updated through automated and manual processes, there are several unique challenges associated with distributed energy resource (DER) patching. Millions of DER devices from dozens of vendors have been deployed in home, corporate, and utility network environments that may or may not be internet-connected. These devices make up a growing portion of the electric power critical infrastructure system and are expected to operate for decades. During that operational period, it is anticipated that critical and noncritical firmware patches will be regularly created to improve DER functional capabilities or repair security deficiencies in the equipment. The SunSpec/Sandia DER Cybersecurity Workgroup created a Patching Subgroup to investigate appropriate recommendations for the DER patching, holding fortnightly meetings for more than nine months. The group focused on DER equipment, but the observations and recommendations contained in this report also apply to DERMS tools and other OT equipment used in the end-to-end DER communication environment. The group found there were many standards and guides that discuss firmware lifecycles, patch and asset management, and code-signing implementations, but did not singularly cover the needs of the DER industry. This report collates best practices from these standards organizations and establishes a set of best practices that may be used as a basis for future national or international patching guides or standards.

More Details

Design Considerations for Distributed Energy Resource Honeypots and Canaries

Johnson, Jay; Jencka, Louis A.; Ortiz, Timothy O.; Jones, Christian B.; Chavez, Adrian R.; Wright, Brian J.; Summers, Adam

There are now over 2.5 million Distributed Energy Resource (DER) installations connected to the U.S. power system. These installations represent a major portion of American electricity critical infrastructure and a cyberattack on these assets in aggregate would significantly affect grid operations. Virtualized Operational Technology (OT) equipment has been shown to provide practitioners with situational awareness and better understanding of adversary tactics, techniques, and procedures (TTPs). Deploying synthetic DER devices as honeypots and canaries would open new avenues of operational defense, threat intelligence gathering, and empower DER owners and operators with new cyber-defense mechanisms against the growing intensity and sophistication of cyberattacks on OT systems. Well-designed DER canary field deployments would deceive adversaries and provide early-warning notifications of adversary presence and malicious activities on OT networks. In this report, we present progress to design a high-fidelity DER honeypot/canary prototype in a late-start Laboratory Directed Research and Development (LDRD) project.

More Details

Deep Reinforcement Learning for Online Distribution Power System Cybersecurity Protection

2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids, SmartGridComm 2021

Bailey, Tyson B.; Johnson, Jay; Levin, Drew L.

The sophistication and regularity of power system cybersecurity attacks has been growing in the last decade, leading researchers to investigate new innovative, cyber-resilient tools to help grid operators defend their networks and power systems. One promising approach is to apply recent advances in deep reinforcement learning (DRL) to aid grid operators in making real-time changes to the power system equipment to counteract malicious actions. While multiple transmission studies have been conducted in the past, in this work we investigate the possibility of defending distribution power systems using a DRL agent who has control of a collection of utility-owned distributed energy resources (DER). A game board using a modified version of the IEEE 13-bus model was simulated using OpenDSS to train the DRL agent and compare its performance to a random agent, a greedy agent, and human players. Both the DRL agent and the greedy approach performed well, suggesting a greedy approach can be appropriate for computationally tractable system configurations and a DRL agent is a viable path forward for systems of increased complexity. This work paves the way to create multi-player distribution system control games which could be designed to defend the power grid under a sophisticated cyber-attack.

More Details

Evaluation of Interoperable Distributed Energy Resources to IEEE 1547.1 Using SunSpec Modbus, IEEE 1815, and IEEE 2030.5

IEEE Access

Johnson, Jay; Fox, Bob; Kaur, Kudrat; Anandan, Jithendar

The American distributed energy resource (DER) interconnection standard, IEEE Std. 1547, was updated in 2018 to include standardized interoperability functionality. As state regulators begin ratifying these requirements, all DER - such as photovoltaic (PV) inverters, energy storage systems (ESSs), and synchronous generators - in those jurisdictions must include a standardized SunSpec Modbus, IEEE 2030.5, or IEEE 1815 (DNP3) communication interface. Utilities and authorized third parties will interact with these DER interfaces to read nameplate information, power measurements, and alarms as well as configure the DER settings and grid-support functionality. In 2020, the certification standard IEEE 1547.1 was revised with test procedures for evaluating the IEEE 1547-2018 interoperability requirements. In this work, we present an open-source framework to evaluate DER interoperability. To demonstrate this capability, we used four test devices: a SunSpec DER Simulator with a SunSpec Modbus interface, an EPRI-developed DER simulator with an IEEE 1815 interface, a Kitu Systems DER simulator with an IEEE 2030.5 interface, and an EPRI IEEE 2030.5-to-Modbus converter. By making this test platform openly available, DER vendors can validate their implementations, utilities can spot check communications to DER equipment, certification laboratories can conduct type testing, and research institutions can more easily research DER interoperability and cybersecurity. We indicate several limitations and ambiguities in the communication protocols, information models, and the IEEE 1547.1-2020 test protocol which were exposed in these evaluations in anticipation that the standards-development organizations will address these issues in the future.

More Details

Recommendations for Distributed Energy Resource Access Control

Johnson, Jay

Cybersecurity for internet - connected Distributed Energy Resources (DER) is essential for the safe and reliable operation of the US power system. Many facets of DER cybersecurity are currently being investigated within different standards development organizations, research communities, and industry committees to address this critical need. This report covers DER access control guidance compiled by the Access Controls Subgroup of the SunSpec/Sandia DER Cybersecurity Workgroup. The goal of the group was to create a consensus - based technical framework to minimize the risk of unauthorized access to DER systems. The subgroup set out to define a strict control environment where users are authorized to access DER monitoring and control features through three steps: (a) user is identified using a proof-of-identity, (b) the user is authenticated by a managed database, (c) and the user is authorized for a specific level of access. DER access control also provides accountability and nonrepudiation within the power system control environment that can be used for forensic analysis and attribution in the event of a cyber-attack. This paper covers foundational requirements for a DER access control environment as well as offering a collection of possible policy, model, and mechanism implementation approaches for IEEE 1547-mandated communication protocols.

More Details

Assessing DER network cybersecurity defences in a power-communication co-simulation environment

IET Cyber-Physical Systems: Theory and Applications

Johnson, Jay; Onunkwo, Ifeoma; Cordeiro, Patricia; Wright, Brian J.; Jacobs, Nicholas; Lai, Christine

Increasing penetrations of interoperable distributed energy resources (DER) in the electric power system are expanding the power system attack surface. Maloperation or malicious control of DER equipment can now cause substantial disturbances to grid operations. Fortunately, many options exist to defend and limit adversary impact on these newly-created DER communication networks, which typically traverse the public internet. However, implementing these security features will increase communication latency, thereby adversely impacting real-time DER grid support service effectiveness. In this work, a collection of software tools called SCEPTRE was used to create a co-simulation environment where SunSpec-compliant photovoltaic inverters were deployed as virtual machines and interconnected to simulated communication network equipment. Network segmentation, encryption, and moving target defence security features were deployed on the control network to evaluate their influence on cybersecurity metrics and power system performance. The results indicated that adding these security features did not impact DER-based grid control systems but improved the cybersecurity posture of the network when implemented appropriately.

More Details

A comparison of der voltage regulation technologies using real-time simulations

Energies

Summers, Adam; Johnson, Jay; Darbali-Zamora, Rachid; Hansen, Clifford H.; Anandan, Jithendar; Showalter, Chad

Grid operators are now considering using distributed energy resources (DERs) to provide distribution voltage regulation rather than installing costly voltage regulation hardware. DER devices include multiple adjustable reactive power control functions, so grid operators have the difficult decision of selecting the best operating mode and settings for the DER. In this work, we develop a novel state estimation-based particle swarm optimization (PSO) for distribution voltage regulation using DER-reactive power setpoints and establish a methodology to validate and compare it against alternative DER control technologies (volt-VAR (VV), extremum seeking control (ESC)) in increasingly higher fidelity environments. Distribution system real-time simulations with virtualized and power hardware-in-the-loop (PHIL)-interfaced DER equipment were run to evaluate the implementations and select the best voltage regulation technique. Each method improved the distribution system voltage profile; VV did not reach the global optimum but the PSO and ESC methods optimized the reactive power contributions of multiple DER devices to approach the optimal solution.

More Details

Optimal Distribution System Voltage Regulation using State Estimation and DER Grid-Support Functions

Johnson, Jay

Increasing solar energy penetrations may create challenges for distribution system operations because production variability can lead to large voltage deviations or protection system miscoordination. Instituting advanced management systems on distribution systems is one promising method for combating these challenges by intelligently controlling distribution assets to regulate voltage and ensure protection safety margins. While it is generally not the case today, greater deployment of power system sensors and interoperable distributed energy resources (DER)e.g., photovoltaic (PV) inverters, energy storage systems (ESS), electric vehicles (EVs)will enable situational awareness, control, and optimization of distribution systems. In this work, a control system was created which measures power system parameters to estimate the status of a feeder, forecasts the distribution state over a short-term horizon, and issues optimal set point commands to distribution-connected equipment to regulate voltage and protect the system. This two-year project integrated multiple research innovations into a management system designed to safely allow PV penetrations of 50% or greater. The integrated software was demonstrated through extensive real-time (RT) and power hardware-in-the-loop studies and a field demonstration on a live power system with a 684 kVA PV system.

More Details

Power system effects and mitigation recommendations for der cyberattacks

IET Cyber-Physical Systems: Theory and Applications

Johnson, Jay; Quiroz, Jimmy; Concepcion, Ricky; Wilches-Bernal, Felipe; Reno, Matthew J.

Extensive deployment of interoperable distributed energy resources (DER) is increasing the power system cyber security attack surface. National and jurisdictional interconnection standards require DER to include a range of autonomous and commanded grid-support functions, which can drastically influence power quality, voltage, and bulk system frequency. Here, the authors investigate the impact to the cyber-physical power system in scenarios where communications and operations of DER are controlled by an adversary. The findings show that each grid-support function exposes the power system to distinct types and magnitudes of risk. The physical impact from cyber actions was analysed in cases of DER providing distribution system voltage regulation and transmission system support. Finally, recommendations are presented for minimising the risk using engineered parameter limits and segmenting the control network to minimise common-mode vulnerabilities.

More Details

Stochastic optimisation with risk aversion for virtual power plant operations: A rolling horizon control

IET Generation, Transmission and Distribution

Castillo, Anya; Flicker, Jack D.; Hansen, Clifford H.; Watson, Jean-Paul W.; Johnson, Jay

While the concept of aggregating and controlling renewable distributed energy resources (DERs) to provide grid services is not new, increasing policy support of DER market participation has driven research and development in algorithms to pool DERs for economically viable market participation. Sandia National Laboratories recently undertook a 3 year research programme to create the components of a real-world virtual power plant (VPP) that can simultaneously participate in multiple markets. The authors' research extends current state-of-the-art rolling horizon control through the application of stochastic programming with risk aversion at various time resolutions. Their rolling horizon control consists of day-ahead optimisation to produce an hourly aggregate schedule for the VPP operator and sub-hourly optimisation for the real-time dispatch of each VPP subresource. Both optimisation routines leverage a two-stage stochastic programme with risk aversion and integrate the most up-to-date forecasts to generate probabilistic scenarios in real operating time. Their results demonstrate the benefits to the VPP operator of constructing a stochastic solution regardless of the weather. In more extreme weather, applying risk optimisation strategies can dramatically increase the financial viability of the VPP. The methodologies presented here can be further tailored for optimal control of any VPP asset fleet and its operational requirements.

More Details

Potential Impacts of Misconfiguration of Inverter-Based Frequency Control

IEEE Power and Energy Society General Meeting

Wilches-Bernal, Felipe; Concepcion, Ricky J.; Johnson, Jay; Byrne, Raymond H.

This paper focuses on a transmission system with a high penetration of converter-interfaced generators participating in its primary frequency regulation. In particular, the effects on system stability of widespread misconfiguration of frequency regulation schemes are considered. Failures in three separate primary frequency control schemes are analyzed by means of time domain simulations where control action was inverted by, for example, negating controller gain. The results indicate that in all cases the frequency response of the system is greatly deteriorated and, in multiple scenarios, the system loses synchronism. It is also shown that including limits to the control action can mitigate the deleterious effects of inverted control configurations.

More Details

International Development of a Distributed Energy Resource Test Platform for Electrical and Interoperability Certification

2018 IEEE 7th World Conference on Photovoltaic Energy Conversion, WCPEC 2018 - A Joint Conference of 45th IEEE PVSC, 28th PVSEC and 34th EU PVSEC

Johnson, Jay; Apablaza-Arancibia, Estefan; Ninad, Nayeem; Turcotte, Dave; Prieur, Alexandre; Ablinger, Ron; Bründlinger, Roland; Moore, Tim; Heidari, Rahmat; Hashimoto, Jun; Cho, Changhee; Kumar, R.S.; Kumar, Jeykishan; Verga, Maurizio; Farias, José L.; Tena, José G.; Baumgartner, Franz; Temez, Iigo V.; Segade, Ricardo A.; Fox, Bob

Several international research laboratories are collaborating under a Smart Grid International Research Facility Network (SIRFN) project to develop certification procedures for advanced distributed energy resources (DER). To effectively evaluate interoperability and grid-support functionality in DER equipment, test permutations across the full range of modes and parameters are required. It is impractical to complete these experiments manually so the project team is working to develop a software tool, associated abstraction layers, and hardware drivers to execute the experiments autonomously using the same opensource test logic. This software can then be programmed to complete interoperable DER certification experiments at DER vendor facilities, certification laboratories, or research institutions. By sharing the codebase with all institutions, barriers to adoption steadily decrease. To demonstrate the approach, Underwriters Laboratories 1741 Supplement A volt-var and specified power factor test results from multiple laboratories are presented and compared.

More Details

PV-Inverter Dynamic Model Validation and Comparison under Fault Scenarios Using a Power Hardware-in-the-Loop Testbed

2018 IEEE 7th World Conference on Photovoltaic Energy Conversion, WCPEC 2018 - A Joint Conference of 45th IEEE PVSC, 28th PVSEC and 34th EU PVSEC

Hernandez-Alvidrez, Javier; Summers, Adam; Pragallapati, Nataraj; Reno, Matthew J.; Ranade, Satish; Johnson, Jay; Brahma, Sukumar; Quiroz, Jimmy E.

The increasing penetration of inverter-interfaced resources underscores the need of valid and accurate pv-inverter models for short circuit studies and for the design of proper protection schemes. This paper presents comparison and validation of several inverter models' dynamics under fault scenarios to two commercial inverters using a Power Hardware-in-the-Loop (PHIL) testbed. Nowadays, IEEE1574 compliant inverters with anti-islanding will contribute for several cycles (1.1 p.u.) before they disconnect. As the inverter standards move towards low voltage ride-through (LVRT) capabilities to counteract remote faults, the accurate modeling of inverters using this feature becomes extremely important. One of the purposes of this paper is to compare the dynamic behavior of different inverter models with LVRT capabilities against two commercial inverters with the aid of PHIL simulation environments. Comparisons were made under different fault scenarios using the IEEE 13 node feeder as testing grid. The other purpose is to raise awareness amongst inverter manufacturers on providing accurate and comprehensive inverter simulation models that account for the protection engineers necessities.

More Details

Fault Current Experimental Results of Photovoltaic Inverters Operating with Grid-Support Functionality

2018 IEEE 7th World Conference on Photovoltaic Energy Conversion, WCPEC 2018 - A Joint Conference of 45th IEEE PVSC, 28th PVSEC and 34th EU PVSEC

Gonzalez, Sigifredo G.; Gurule, Nicholas S.; Reno, Matthew J.; Johnson, Jay

The proliferation of photovoltaic (PV) distributed energy resources (DER) on distribution systems have caused concerns about electric power system (EPS) protection schemes, protection configurations, and device coordination. With the EPS designed for power to flow in one direction, the high penetration of PV-based DER has created concerns of grid reliability and protection scheme efficacy. The short-circuit current characteristics of the classical synchronous generator has been well characterized for symmetrical or unsymmetrical short circuit faults, but inverter-based DER dynamic models are not as wellknown and are generally specific to a single inverter manufacturer. There is also uncertainty in how advanced inverter controls like volt-var and low-voltage ride-through capabilities can impact the inverter fault currents. This paper performs laboratory tests to quantify the fault currents of single-phase, three-phase, and grid-forming inverters under a range of gridsupport function operating modes. The results characterize the PV DER sub-transient, transient, and steady-state equivalents. It was found that grid-support functions affect the current contribution from PV inverters.

More Details

Behavioral Based Trust Metrics and the Smart Grid

Proceedings - 17th IEEE International Conference on Trust, Security and Privacy in Computing and Communications and 12th IEEE International Conference on Big Data Science and Engineering, Trustcom/BigDataSE 2018

Obert, James O.; Chavez, Adrian R.; Johnson, Jay

To ensure reliable and predictable service in the electrical grid it is important to gauge the level of trust present within critical components and substations. Although trust throughout a smart grid is temporal and dynamically varies according to measured states, it is possible to accurately formulate communications and service level strategies based on such trust measurements. Utilizing an effective set of machine learning and statistical methods, it is shown that establishment of trust levels between substations using behavioral pattern analysis is possible. It is also shown that the establishment of such trust can facilitate simple secure communications routing between substations.

More Details

Interconnection Standard Grid-Support Function Evaluations Using an Automated Hardware-in-the-Loop Testbed

IEEE Journal of Photovoltaics

Johnson, Jay; Ablinger, Ron; Bruendlinger, Roland; Fox, Bob; Flicker, Jack

Grid operators are increasingly turning to advanced grid-support functions in distributed energy resources (DER) to assist with distribution circuit voltage regulation, bulk system frequency control, and power system protection. The U.S. DER certification standard, Underwriters Laboratories (UL) 1741, was revised in September 2016 to add test procedures for multiple grid-support functions. Sandia National Laboratories, SunSpec Alliance, and growing community of collaborators have undertaken a multiyear effort to create an open-source system validation platform (SVP) that automates DER interconnection and interoperability test procedures by communicating with grid simulators, photovoltaic (PV) simulators, data acquisition systems, and interoperable equipment under test. However, the power hardware required for generating the test conditions may be untenable for many organizations. Herein, we discuss development of the SVP testing capabilities for UL 1741 tests utilizing a controller hardware-in-The-loop testbed that precludes the need for power hardware using a 34.5 kW Austrian Institute of Technology smart grid controller. Analysis of normal ramp rate, soft start ramp rate, specified power factor, volt-VAr, and frequency-watt advanced grid functions, and the effectiveness of the UL 1741 test protocols are included.

More Details

Roadmap for photovoltaic cyber security

Johnson, Jay

Cyber-secure, resilient energy is paramount to the prosperity of the United States. As the experience and sophistication of cyber adversaries grow, so too must the US power system’s defenses, situational awareness, and response and recovery strategies. Traditionally, power systems were operated with dedicated communication channels to large generators and utility-owned assets but now there is greater reliance on photovoltaic (PV) systems to provide power generation. PV systems often communicate to utilities, aggregators, and other grid operators over the public internet so the power system attack surface has significantly expanded. At the same time, solar energy systems are equipped with a range of grid-support functions, that—if controlled or programmed improperly—present a risk of power system disturbances. This document is a five-year roadmap intended to chart a path for improving cyber security for communication-enabled PV systems with clear roles and responsibilities for government, standards development organizations, PV vendors, and grid operators.

More Details

Design and Evaluation of a Secure Virtual Power Plant

Johnson, Jay

For three years, Sandia National Laboratories, Georgia Institute of Technology, and University of Illinois at Urbana-Champaign investigated a smart grid vision in which renewable-centric Virtual Power Plants (VPPs) provided ancillary services with interoperable distributed energy resources (DER). This team researched, designed, built, and evaluated real-time VPP designs incorporating DER forecasting, stochastic optimization, controls, and cyber security to construct a system capable of delivering reliable ancillary services, which have been traditionally provided by large power plants or other dedicated equipment. VPPs have become possible through an evolving landscape of state and national interconnection standards, which now require DER to include grid-support functionality and communications capabilities. This makes it possible for third party aggregators to provide a range of critical grid services such as voltage regulation, frequency regulation, and contingency reserves to grid operators. This paradigm (a) enables renewable energy, demand response, and energy storage to participate in grid operations and provide grid services, (b) improves grid reliability by providing additional operating reserves for utilities, independent system operators (ISOs), and regional transmission organization (RTOs), and (c) removes renewable energy high-penetration barriers by providing services with photovoltaics and wind resources that traditionally were the jobs of thermal generators. Therefore, it is believed VPP deployment will have far-reaching positive consequences for grid operations and may provide a robust pathway to high penetrations of renewables on US power systems. In this report, we design VPPs to provide a range of grid-support services and demonstrate one VPP which simultaneously provides bulk-system energy and ancillary reserves.

More Details

Full State Feedback Control for Virtual Power Plants

Johnson, Jay

This report presents an object-oriented implementation of full state feedback control for virtual power plants (VPP). The components of the VPP full state feedback control are (1) objectoriented high-fidelity modeling for all devices in the VPP; (2) Distribution System Distributed Quasi-Dynamic State Estimation (DS-DQSE) that enables full observability of the VPP by augmenting actual measurements with virtual, derived and pseudo measurements and performing the Quasi-Dynamic State Estimation (QSE) in a distributed manner, and (3) automated formulation of the Optimal Power Flow (OPF) in real time using the output of the DS-DQSE, and solving the distributed OPF to provide the optimal control commands to the DERs of the VPP.

More Details

Notice of Removal: Photovoltaic frequency-watt curve design for frequency regulation and fast contingency reserves

2017 IEEE 44th Photovoltaic Specialist Conference, PVSC 2017

Johnson, Jay; Neely, Jason; Delhotal, Jarod; Lave, Matthew

When renewable energy resources are installed in electricity grids, they typically increase generation variability and displace thermal generator control action and inertia. Grid operators combat these emerging challenges with advanced distributed energy resource (DER) functions to support frequency, and provide voltage regulation and protection mechanisms. This paper focuses on providing frequency reserves using autonomous IEC TR 61850-90-7 pointwise frequency-watt (FW) functions that adjust DER active power as a function of measured grid frequency. The importance of incorporating FW functions into a fleet of photovoltaic (PV) systems is demonstrated in simulation. Effects of FW curve design, including curtailment, deadband, and droop, were analyzed against performance metrics using Latin Hypercube Sampling (LHS) for 20%, 70%, and 120% PV penetration scenarios on the Hawaiian island of Lanai. Finally, to understand the financial implications of FW functions to utilities, a performance function was defined based on monetary costs attributable to curtailed photovoltaic production, load shedding, and generator wear. An optimization wrapper was then created to find the best FW function curve for each penetration level. It was found that in all cases, the utility would save money by implementing appropriate FW functions.

More Details

Arc-Fault Primer: Numerical, Analytical, and Experimental Characteristics of Initiation and Sustainment of Arc Plasmas (DRAFT)

Armijo, Kenneth M.; Lavrova, Olga A.; Harrison, Richard K.; Rodriguez, Salvador B.; Johnson, Jay; Schindelholz, Eric J.

While arc-faults are rare in electrical installations, many documented events have led to fires that resulted in significant damage to energy-generation, commercial and residential systems, as well as surrounding structures, in both the United States and abroad. Arc-plasma discharges arise over time due to a variety of reliability issues related to cable material degradation, electrical and mechanical stresses or acute conductive wiring dislocations. These may lead to discontinuity between energized conductors, facilitating arcing events and fires. Arc-flash events rapidly release significant energy in a localized volume, where the electric arc experiences a reduction in resistance. This facilitates a reduction in electrical resistance as the arc temperature and pressure can increase rapidly. Strong pressure waves, electromagnetic interference (EMI), and intense light from an arc pose a threat to electrical worker safety and system equipment. This arc-fault primer provides basic fundamental insight into arc-fault plasma discharges, and an overview of direct current (DC) and alternating current (AC) arc-fault phenomena. This primer also covers pressure waves and EMI arc-fault hazard analyses related to incident energy prediction and potential damage analysis. Mitigation strategies are also discussed related to engineering design and employment of protective devices including arc-fault circuit interrupters (AFCIs). Best practices related to worker safety are also covered, especially as they pertain to electrical codes and standards, particularly Institute of Electrical and Electronics Engineers (IEEE) 1584 and National Fire Protection Agency (NFPA) 70E. Throughout the primer various modelling and test capabilities at Sandia National Laboratories are also covered, especially as they relate to novel methods of arc-fault/arc-flash characterization and mitigation approaches. Herein, this work describes methods for producing and characterizing controlled, sustained arcs at atmospheric pressures as well as methods for mitigation with novel materials.

More Details

DERlab Report

Johnson, Jay

With the rapidly changing landscape of grid codes and interconnection standards, manufacturers of DER components are under increasing pressure to reliably update and validate the interoperability and performance of their equipment for different regional requirements and grid conditions. To help vendors meet these standards, AIT and Sandia have teamed up and introduced an approach for the rapid, concurrent development of controls and application software through a controller hardware-in-the-loop (CHIL) testbed integrated with an automated testing platform.

More Details

Small commercial inverter laboratory evaluations of UL 1741 SA grid-support function response times

Conference Record of the IEEE Photovoltaic Specialists Conference

Gonzalez, Sigifredo G.; Johnson, Jay; Reno, Matthew J.; Zgonena, Timothy

Photovoltaic (PV) distributed energy resources (DER) have reached approximately 27 GW in the U.S., and the solar penetration rate continues to increase. This growth is expected to continue, causing challenges for grid operators who must maintain grid stability, reliability, and resiliency. To minimize adverse effects on the performance of electrical power system (EPS) with increasing levels of variable renewable generation, photovoltaic inverters must implement grid-support capabilities, allowing the DER to actively participate in grid support operations and remain connected during short-term voltage and frequency anomalies. These functions include voltage and frequency regulation features that adjust DER active and reactive power at the point of common coupling. To evaluate the risk of these functions conflicting with traditional distribution system voltage regulation equipment, researchers used several methods to quantify EPS-support function response times for autonomous voltage regulation functions (volt-var function). Based on this study, no adverse interactions between PV inverters with volt-var functions and load tap changing transformers or capacitor banks were discovered.

More Details

Photovoltaic Frequency-Watt Curve Design for Frequency Regulation and Fast Contingency Reserves

IEEE Journal of Photovoltaics

Johnson, Jay; Neely, Jason C.; Delhotal, Jarod J.; Lave, Matthew

When renewable energy resources are installed in electricity grids, they typically increase generation variability and displace thermal generator control action and inertia. Grid operators combat these emerging challenges with advanced distributed energy resource (DER) functions to support frequency and provide voltage regulation and protection mechanisms. This paper focuses on providing frequency reserves using autonomous IEC TR 61850-90-7 pointwise frequency-watt (FW) functions that adjust DER active power as a function of measured grid frequency. The importance of incorporating FW functions into a fleet of photovoltaic (PV) systems is demonstrated in simulation. Effects of FW curve design, including curtailment, deadband, and droop, were analyzed against performance metrics using Latin hypercube sampling for 20%, 70%, and 120% PV penetration scenarios on the Hawaiian island of Lanai. Finally, to understand the financial implications of FW functions to utilities, a performance function was defined based on monetary costs attributable to curtailed PV production, load shedding, and generator wear. An optimization wrapper was then created to find the best FW function curve for each penetration level. It was found that in all cases, the utility would save money by implementing appropriate FW functions.

More Details

Evaluation of PV frequency-watt function for fast frequency reserves

Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC

Neely, J.; Johnson, Jay; Delhotal, Jarod J.; Gonzalez, Sigifredo G.; Lave, M.

Increasing the penetration of distributed renewable sources, including photovoltaic (PV) sources, poses technical challenges for grid management. The grid has been optimized over decades to rely upon large centralized power plants with well-established feedback controls, but now non-dispatchable, renewable sources are displacing these controllable generators. By programming autonomous functionality into distributed energy resources-in particular, PV inverters-the aggregated PV resources can act collectively to mitigate grid disturbances. This paper focuses on the problem of frequency regulation. Specifically, the use of existing IEC 61850-90-7 grid support functions to improve grid frequency response using a frequency-watt function was investigated. The proposed approach dampens frequency disturbances associated with variable irradiance conditions as well as contingency events without incorporating expensive energy storage systems or supplemental generation, but it does require some curtailment of power to enable headroom for control action. Thus, this study includes a determination of the trade-offs between reduced energy delivery and dynamic performance. This paper includes simulation results for an island grid and hardware results for a testbed that includes a load, a 225 kW diesel generator, and a 24 kW inverter.

More Details

PV Systems Reliability Final Technical Report: Ground Fault Detection

Lavrova, Olga A.; Flicker, Jack D.; Johnson, Jay

We have examined ground faults in PhotoVoltaic (PV) arrays and the efficacy of fuse, current detection (RCD), current sense monitoring/relays (CSM), isolation/insulation (Riso) monitoring, and Ground Fault Detection and Isolation (GFID) using simulations based on a Simulation Program with Integrated Circuit Emphasis SPICE ground fault circuit model, experimental ground faults installed on real arrays, and theoretical equations.

More Details

Why Do Electricity Policy and Competitive Markets Fail to Use Advanced PV Systems to Improve Distribution Power Quality?

Journal of Solar Energy

Johnson, Jay

The increasing pressure for network operators to meet distribution network power quality standards with increasing peak loads, renewable energy targets, and advances in automated distributed power electronics and communications is forcing policy-makers to understand new means to distribute costs and benefits within electricity markets. Discussions surrounding how distributed generation (DG) exhibits active voltage regulation and power factor/reactive power control and other power quality capabilities are complicated by uncertainties of baseline local distribution network power quality and to whom and how costs and benefits of improved electricity infrastructure will be allocated. DG providing ancillary services that dynamically respond to the network characteristics could lead to major network improvements. With proper market structures renewable energy systems could greatly improve power quality on distribution systems with nearly no additional cost to the grid operators. Renewable DG does have variability challenges, though this issue can be overcome with energy storage, forecasting, and advanced inverter functionality. This paper presents real data from a large-scale grid-connected PV array with large-scale storage and explores effective mitigation measures for PV system variability. As a result, we discuss useful inverter technical knowledge for policy-makers to mitigate ongoing inflation of electricity network tariff components by new DG interconnection requirements or electricity markets which value power quality and control.

More Details

Electrical power system support-function capabilities of residential and small commercial inverters

2015 IEEE 42nd Photovoltaic Specialist Conference, PVSC 2015

Gonzalez, Sigifredo G.; Johnson, Jay; Neely, Jason

Presently, approximately 20 GW or 2% of the nation's generating capacity comes from solar, and solar penetration is increasing. However, for this trend to continue without adversely affecting electrical power system (EPS) performance, the photovoltaic inverters must participate in voltage- and frequency-regulation requirements. EPS support capabilities under development are the low-/high-voltage and low/high-frequency ride through, volt-VAr, frequency-watt, watt-power factor, commanded power factor, commanded power functions, and others. Each of the functions have parameter set points, and most have ramp rates for implementation of the functions as defined in the International Electrotechnical Commission Technical Report 61850-90-7. This paper focuses on methods to quantify EPS support functions for DER certification. Sandia National Laboratories and Underwriters Laboratories, in collaboration with industry stakeholders, have developed a draft test protocol that efficiently and effectively evaluates support-function capabilities. This paper describes the functions, their intended use, and results of EPS support functions in a controlled laboratory environment.

More Details

Recommendations for isolation monitor ground fault detectors on residential and utility-scale PV systems

2015 IEEE 42nd Photovoltaic Specialist Conference, PVSC 2015

Flicker, Jack D.; Johnson, Jay; Albers, Mark; Ball, Greg

PV faults have caused rooftop fires in the U.S., Europe, and elsewhere in the world. One prominent cause of past electrical fires was the ground fault detection blind spot in fuse-based protection systems uncovered by the Solar America Board for Codes and Standards (SolarABCs) steering committee in 2011. Fortunately, a number of alternatives to ground fault fuses have been identified, but there has been limited adoption and historical use of these technologies in the United States. This paper investigates the efficacy of one of these devices known as isolation monitoring (or isolation resistance monitoring, Riso) in small (∼3kW) and large (∼700 kW) arrays. Unfaulted and faulted PV arrays were monitored with Riso technology and compared to SPICE simulations to recommend appropriate thresholds to the maximize the range of ground faults which could be detected while minimizing unwanted tripping. Based on analytical and computational models, it is impossible to determine a trip threshold that provides fire safety and negates unwanted tripping issues. This paper mathematically demonstrates that appropriate Riso trip thresholds must be determined on an arrayby- array basis with sufficient leeway by system operators to adjust trip threshold settings for their particular usage cases.

More Details

PV Systems Reliability Final Technical Report

Lavrova, Olga A.; Flicker, Jack D.; Johnson, Jay; Armijo, Kenneth M.; Gonzalez, Sigifredo G.; Schindelholz, Eric J.; Sorensen, Neil R.; Yang, Ben Y.

The continued exponential growth of photovoltaic technologies paves a path to a solar-powered world, but requires continued progress toward low-cost, high-reliability, high-performance photovoltaic (PV) systems. High reliability is an essential element in achieving low-cost solar electricity by reducing operation and maintenance (O&M) costs and extending system lifetime and availability, but these attributes are difficult to verify at the time of installation. Utilities, financiers, homeowners, and planners are demanding this information in order to evaluate their financial risk as a prerequisite to large investments. Reliability research and development (R&D) is needed to build market confidence by improving product reliability and by improving predictions of system availability, O&M cost, and lifetime. This project is focused on understanding, predicting, and improving the reliability of PV systems. The two areas being pursued include PV arc-fault and ground fault issues, and inverter reliability.

More Details

Optimization of a Virtual Power Plant to Provide Frequency Support

Neely, Jason C.; Johnson, Jay; Gonzalez, Sigifredo G.; Lave, Matthew S.; Delhotal, Jarod J.

Increasing the penetration of distributed renewable sources, including photovoltaic (PV) sources, poses technical challenges for grid management. The grid has been optimized over decades to rely upon large centralized power plants with well-established feedback controls, but now non-dispatchable, renewable sources are displacing these controllable generators. This one-year study was funded by the Department of Energy (DOE) SunShot program and is intended to better utilize those variable resources by providing electric utilities with the tools to implement frequency regulation and primary frequency reserves using aggregated renewable resources, known as a virtual power plant. The goal is to eventually enable the integration of 100s of Gigawatts into US power systems.

More Details

Accelerating Development of Advanced Inverters

Neely, Jason C.; Johnson, Jay; Gonzalez, Sigifredo G.; Ropp, Michael R.

Increasing the penetration of distributed renewable sources, including photovoltaic (PV) generators, poses technical challenges for grid management. The grid has been optimized over decades to rely on large centralized power plants with well-established feedback controls. Conventional generators provide relatively constant dispatchable power and help to regulate both voltage and frequency. In contrast, photovoltaic (PV) power is variable, is only as predictable as the weather, and provides no control action. Thus, as conventional generation is displaced by PV power, utility operation stake holders are concerned about managing fluctuations in grid voltage and frequency. Furthermore, since the operation of these distributed resources are bound by certain rules that require they stop delivering power when measured voltage or frequency deviate from the nominal operating point, there are also concerns that a single grid event may cause a large fraction of generation to turn off, triggering a black out or break-up of an electric power system.

More Details

Photovoltaic Microinverter Testbed for Multiple Device Interoperability

Quiroz, Jimmy E.; Gonzalez, Sigifredo G.; King, Bruce H.; Riley, Daniel R.; Johnson, Jay; Stein, Joshua S.

IEEE Standard 1547-2003 [1] conformance of several interconnected microinverters was performed by Sandia National Laboratories (SNL) to determine if there were emergent adverse behaviors of co-located aggregated distributed energy resources. Experiments demonstrated the certification tests could be expanded for multi- manufacturer microinverter interoperability. Evaluations determined the microinverters' response to abnormal conditions in voltage and frequency, interruption in grid service, and cumulative power quality. No issues were identified to be caused by the interconnection of multiple devices.

More Details

Arc fault signal detection - Fourier transformation vs. wavelet decomposition techniques using synthesized data

2014 IEEE 40th Photovoltaic Specialist Conference, PVSC 2014

Wang, Zhan; McConnell, Stephen; Balog, Robert S.; Johnson, Jay

Arc faults are a significant reliability and safety concern for photovoltaic (PV) systems and can cause intermittent operation, system failure, electrical shock hazard, and even fire. Further, arc faults in deployed systems are seemingly random and challenging to faithfully create experimentally in the laboratory, which makes the study of arc fault signature detection difficult. While it may seem trivial to simply record arcing signatures from real-world system, an obstacle in capturing these arc signals is that arc faults in the PV systems do not happen predictably, and depending on the location of the sensors relative to the arc location, may contribute a negligible portion to the magnitude of the sensed current or voltage waveform. The high-frequency content of the arc requires fast sampling, long memory, and fast processing to acquire, store, and analyze the waveforms; this adds substantial balance-of-system cost when considering widespread deployment of arc fault detectors in PV applications. In this paper, we study the performance of the fast Fourier transform arc detection method compared to the wavelet decomposition method by using synthetic waveforms. These waveforms are created by combining measured waveforms of normal background noise from inverters in DC PV arrays along with waveforms of arcing events. Using this technique allows the ratio of amplitudes are varied. Combining these separate waveforms in various amplitude proportions enables creation of test signals for the study of detection algorithm efficacy. It will be shown that the wavelet transformation technique produce more easily recognized detection results and can perform this detection using a much lower sampling rate than what is required for the fast Fourier transform

More Details

Evaluation method for arc fault detection algorithms

2014 IEEE 40th Photovoltaic Specialist Conference, PVSC 2014

McConnell, Stephen; Wang, Zhan; Balog, Robert S.; Johnson, Jay

Many methods have been proposed to detect arc faults within photovoltaic systems. However, because of the dearth of data surrounding arcs that actually occur in commercial or residential PV systems, a sound method is necessary to systematically check for the effectiveness of algorithms claiming the ability to detect PV arc faults. This method should include data representing actual background PV system noise and seek to quantify the limits of the detection capability for the algorithms of interest.

More Details

Characterizing fire danger from low-power photovoltaic arc-faults

2014 IEEE 40th Photovoltaic Specialist Conference, PVSC 2014

Armijo, Kenneth M.; Johnson, Jay; Hibbs, Michael; Fresquez, Armando J.

While arc-faults are rare in photovoltaic installations, more than a dozen documented arc-faults have led to fires and resulted in significant damage to the PV system and surrounding structures. In the United States, National Electrical Code® (NEC) 690.11 requires a listed arc fault protection device on new PV systems. In order to list new arc-fault circuit interrupters (AFCIs), Underwriters Laboratories created the certification outline of investigation UL 1699B. The outline only requires AFCI devices to be tested at arc powers between 300-900 W; however, arcs of much less power are capable of creating fires in PV systems. In this work we investigate the characteristics of low power (100-300 W) arc-faults to determine the potential for fires, appropriate AFCI trip times, and the characteristics of the pyrolyzation process. This analysis was performed with experimental tests of arc-faults in close proximity to three polymer materials common in PV systems, e.g., polycarbonate, PET, and nylon 6,6. Two polymer geometries were tested to vary the presence of oxygen in the DC arc plasma. The samples were also exposed to arcs generated with different material geometries, arc power levels, and discharge times to identify ignition times. To better understand the burn characteristics of different polymers in PV systems, thermal decomposition of the sheath materials was performed using infrared spectra analysis. Overall a trip time of less than 2 seconds is recommended for the suppression of fire ignition during arc-fault events.

More Details

Parametric study of PV arc-fault generation methods and analysis of conducted DC spectrum

2014 IEEE 40th Photovoltaic Specialist Conference, PVSC 2014

Johnson, Jay; Armijo, Kenneth M.

Many photovoltaic (PV) direct current (DC) arc-fault detectors use the frequency content of the PV system to detect arcs. The spectral content is influenced by the duration and power of the arc, surrounding insulation material geometry and chemistry, and electrode geometry. A parametric analysis was conducted in order to inform the Underwriters Laboratories (UL) 1699B ('Photovoltaic DC Arc-Fault Circuit Protection') Standards Technical Panel (STP) of improvements to arc-fault generation methods in the certification standard. These recommendations are designed to reduce the complexity of the experimental setup, improve testing repeatability, and quantify the uncertainty of the arc-fault radio frequency (RF) noise generated by different PV arcs in the field. In this investigation, we (a) discuss the differences in establishing and sustaining arc-faults for a number of different test configurations and (b) compare the variability in arc-fault spectral content for each respective test, and analyze the evolution of the RF signature over the duration of the fault; with the ultimate goal of determining the most repeatable, 'worst case' tests for adoption by UL.

More Details

Arc fault risk assessment and degradation model development for photovoltaic connectors

2014 IEEE 40th Photovoltaic Specialist Conference, PVSC 2014

Yang, Benjamin B.; Armijo, Kenneth M.; Harrison, Richard K.; Thomas, Kara E.; Johnson, Jay; Taylor, Jason M.; Sorensen, Neil R.

This work investigates balance of systems (BOS) connector reliability from the perspective of arc fault risk. Accelerated tests were performed on connectors for future development of a reliability model. Thousands of hours of damp heat and atmospheric corrosion tests found BOS connectors to be resilient to corrosion-related degradation. A procedure was also developed to evaluate new and aged connectors for arc fault risk. The measurements show that arc fault risk is dependent on a combination of materials composition as well as design geometry. Thermal measurements as well as optical emission spectroscopy were also performed to further characterize the arc plasma. Together, the degradation model, arc fault risk assessment technique, and characterization methods can provide operators of photovoltaic installations information necessary to develop a data-driven plan for BOS connector maintenance as well as identify opportunities for arc fault prognostics.

More Details

High-resolution residential feeder load characterization and variability modelling

2014 IEEE 40th Photovoltaic Specialist Conference, PVSC 2014

Pohl, Andrew; Johnson, Jay; Sena, Santiago; Broderick, Robert J.; Quiroz, Jimmy E.

Data from of a highly instrumented residential feeder in Ota City, Japan was used to determine 1 second load variability for the aggregation of 50, 100, 250, and 500 homes. The load variability is categorized by binning the data into seasons, weekdays vs. weekends, and time of day to create artificial sub-15-minute variability estimates for modeling dynamic load profiles. An autoregressive, AR(1) function along with a high pass filter was used to simulate the high resolution variability. The simulated data were validated against the original 1-second measured data.

More Details

Experimental comparison of PV-smoothing controllers using distributed generators

Johnson, Jay

The power output variability of photovoltaic systems can affect local electrical grids in locations with high renewable energy penetrations or weak distribution or transmission systems. In those rare cases, quick controllable generators (e.g., energy storage systems) or loads can counteract the destabilizing effects by compensating for the power fluctuations. Previously, control algorithms for coordinated and uncoordinated operation of a small natural gas engine-generator (genset) and a battery for smoothing PV plant output were optimized using MATLAB/Simulink simulations. The simulations demonstrated that a traditional generation resource such as a natural gas genset in combination with a battery would smooth the photovoltaic output while using a smaller battery state of charge (SOC) range and extending the life of the battery. This paper reports on the experimental implementation of the coordinated and uncoordinated controllers to verify the simulations and determine the differences in the controllers. The experiments were performed with the PNM PV and energy storage Prosperity site and a gas engine-generator located at the Aperture Center at Mesa Del Sol in Albuquerque, New Mexico. Two field demonstrations were performed to compare the different PV smoothing control algorithms: (1) implementing the coordinated and uncoordinated controls while switching off a subsection of the PV array at precise times on successive clear days, and (2) comparing the results of the battery and genset outputs for the coordinated control on a high variability day with simulations of the coordinated and uncoordinated controls. It was found that for certain PV power profiles the SOC range of the battery may be larger with the coordinated control, but the total amp-hours through the battery-which approximates battery wear-will always be smaller with the coordinated control.

More Details

Test Protocols for Advanced Inverter Interoperability Functions - Appendices

Johnson, Jay

Distributed energy resources (DER) such as photovoltaic (PV) systems, when deployed in a large scale, are capable of influencing significantly the operation of power systems. Looking to the future, stakeholders are working on standards to make it possible to manage the potentially complex interactions between DER and the power system. In 2009, the Electric Power Research Institute (EPRI), Sandia National Laboratories (SNL) with the U.S. Department of Energy (DOE), and the Solar Electric Power Association (SEPA) initiated a large industry collaborative to identify and standardize definitions for a set of DER grid support functions. While the initial effort concentrated on grid-tied PV inverters and energy storage systems, the concepts have applicability to all DER. A partial product of this on-going effort is a reference definitions document (IEC TR 61850-90-7, Object models for power converters in distributed energy resources (DER) systems) that has become a basis for expansion of related International Electrotechnical Commission (IEC) standards, and is supported by US National Institute of Standards and Technology (NIST) Smart Grid Interoperability Panel (SGIP). Some industry-led organizations advancing communications protocols have also embraced this work. As standards continue to evolve, it is necessary to develop test protocols to independently verify that the inverters are properly executing the advanced functions. Interoperability is assured by establishing common definitions for the functions and a method to test compliance with operational requirements. This document describes test protocols developed by SNL to evaluate the electrical performance and operational capabilities of PV inverters and energy storage, as described in IEC TR 61850-90-7. While many of these functions are not now required by existing grid codes or may not be widely available commercially, the industry is rapidly moving in that direction. Interoperability issues are already apparent as some of these inverter capabilities are being incorporated in large demonstration and commercial projects. The test protocols are intended to be used to verify acceptable performance of inverters within the standard framework described in IEC TR 61850-90-7. These test protocols, as they are refined and validated over time, can become precursors for future certification test procedures for DER advanced grid support functions.

More Details

Improving the Sandia Test Protocols with Advanced Inverter Functionality Testing of INV3, VV11, FW21, and L/HVRT

Johnson, Jay

Sandia National Laboratories has created a test protocol for IEC TR 61850-90-7 advanced distributed energy resource (DER) functions, titled "Test Protocols for Advanced Inverter Interoperability Functions," often referred to as the Sandia Test Protocols. This document is currently in draft form, but has been shared with stakeholders around the world with the ultimate goal of collaborating to create a consensus set of test protocols which can be then incorporated into an International Electrotechnical Commission (IEC) and/or Underwriters Laboratories (UL) certification standard. The protocols are designed to ensure functional interoperability of DER (primarily photovoltaic (PV) inverters and energy storage systems) as specified by the IEC technical report through communication and electrical tests. In this report, Sandia exercises the electrical characterization portion of the test protocols for four functions: constant power factor (INV3), volt-var (VV11), frequency-watt (FW21), and Low and High Voltage Ride Through (L/HVRT). The goal of the tests reported here was not to characterize the performance of the equipment under test (EUT), but rather to (a) exercise the draft Sandia Test Protocols in order to identify any revisions needed in test procedures, conditions, or equipment and (b) gain experience with state-of-the-art DER equipment to determine if the tests put unrealistic or overly aggressive requirements on EUT operation. In performing the work according to the current versions of the protocols, Sandia was able to identify weaknesses in the current versions and suggest improvements to the test protocols.

More Details

Test Protocols for Advanced Inverter Interoperability Functions – Main Document

Johnson, Jay

Distributed energy resources (DER) such as photovoltaic (PV) systems, when deployed in a large scale, are capable of influencing significantly the operation of power systems. Looking to the future, stakeholders are working on standards to make it possible to manage the potentially complex interactions between DER and the power system. In 2009, the Electric Power Research Institute (EPRI), Sandia National Laboratories (SNL) with the U.S. Department of Energy (DOE), and the Solar Electric Power Association (SEPA) initiated a large industry collaborative to identify and standardize definitions for a set of DER grid support functions. While the initial effort concentrated on grid-tied PV inverters and energy storage systems, the concepts have applicability to all DER. A partial product of this on-going effort is a reference definitions document (IEC TR 61850-90-7, Object models for power converters in distributed energy resources (DER) systems) that has become a basis for expansion of related International Electrotechnical Commission (IEC) standards, and is supported by US National Institute of Standards and Technology (NIST) Smart Grid Interoperability Panel (SGIP). Some industry-led organizations advancing communications protocols have also embraced this work. As standards continue to evolve, it is necessary to develop test protocols to independently verify that the inverters are properly executing the advanced functions. Interoperability is assured by establishing common definitions for the functions and a method to test compliance with operational requirements. This document describes test protocols developed by SNL to evaluate the electrical performance and operational capabilities of PV inverters and energy storage, as described in IEC TR 61850-90-7. While many of these functions are not currently required by existing grid codes or may not be widely available commercially, the industry is rapidly moving in that direction. Interoperability issues are already apparent as some of these inverter capabilities are being incorporated in large demonstration and commercial projects. The test protocols are intended to be used to verify acceptable performance of inverters within the standard framework described in IEC TR 61850-90-7. These test protocols, as they are refined and validated over time, can become precursors for future certification test procedures for DER advanced grid support functions.

More Details

Series and parallel arc-fault circuit interrupter tests

Johnson, Jay

While the 2011 National Electrical Codeª (NEC) only requires series arc-fault protection, some arc-fault circuit interrupter (AFCI) manufacturers are designing products to detect and mitigate both series and parallel arc-faults. Sandia National Laboratories (SNL) has extensively investigated the electrical differences of series and parallel arc-faults and has offered possible classification and mitigation solutions. As part of this effort, Sandia National Laboratories has collaborated with MidNite Solar to create and test a 24-string combiner box with an AFCI which detects, differentiates, and de-energizes series and parallel arc-faults. In the case of the MidNite AFCI prototype, series arc-faults are mitigated by opening the PV strings, whereas parallel arc-faults are mitigated by shorting the array. A range of different experimental series and parallel arc-fault tests with the MidNite combiner box were performed at the Distributed Energy Technologies Laboratory (DETL) at SNL in Albuquerque, NM. In all the tests, the prototype de-energized the arc-faults in the time period required by the arc-fault circuit interrupt testing standard, UL 1699B. The experimental tests confirm series and parallel arc-faults can be successfully mitigated with a combiner box-integrated solution.

More Details

Photovoltaic ground fault and blind spot electrical simulations

Flicker, Jack D.; Johnson, Jay

Ground faults in photovoltaic (PV) systems pose a fire and shock hazard. To mitigate these risks, AC-isolated, DC grounded PV systems in the United States use Ground Fault Protection Devices (GFPDs), e.g., fuses, to de-energize the PV system when there is a ground fault. Recently the effectiveness of these protection devices has come under question because multiple fires have started when ground faults went undetected. In order to understand the limitations of fuse-based ground fault protection in PV systems, analytical and numerical simulations of different ground faults were performed. The numerical simulations were conducted with Simulation Program with Integrated Circuit Emphasis (SPICE) using a circuit model of the PV system which included the modules, wiring, switchgear, grounded or ungrounded components, and the inverter. The derivation of the SPICE model and the results of parametric fault current studies are provided with varying array topologies, fuse sizes, and fault impedances. Closed-form analytical approximations for GFPD currents from faults to the grounded current carrying conductor-known as %E2%80%9Cblind spot%E2%80%9D ground faults-are derived to provide greater understanding of the influence of array impedances on fault currents. The behavior of the array during various ground faults is studied for a range of ground fault fuse sizes to determine if reducing the size of the fuse improves ground fault detection sensitivity. The results of the simulations show that reducing the amperage rating of the protective fuse does increase fault current detection sensitivity without increasing the likelihood of nuisance trips to a degree. Unfortunately, this benefit reaches a limit as fuses become smaller and their internal resistance increases to the point of becoming a major element in the fault current circuit.

More Details

Crosstalk nuisance trip testing of photovoltaic DC arc-fault detectors

Conference Record of the IEEE Photovoltaic Specialists Conference

Johnson, Jay; Oberhauser, Chris; Montoya, Michael; Fresquez, Armando; Gonzalez, Sigifredo; Patel, Ash

To improve fire safety in PV systems, Article 690.11 of the 2011 National Electrical Code (NEC) requires photovoltaic (PV) systems above 80 V on or penetrating a building to include a listed arc-fault protection device. Many arc-fault circuit interrupter (AFCI) devices are currently being listed and entering the market. Depending on the manufacturer, AFCIs are being deployed at the module-level, string-level, or array-level. Each arc-fault protection scheme has a different cost and arc-fault isolation capability. Module-level and string-level AFCI devices tout the ability to isolate the fault, identify the failed PV component, and minimize the power loss by selectively de-energizing a portion of the array. However, these benefits are negated if the arcing noisetypically used for arc-fault detectionpropagates to parallel, unfaulted strings and cause additional AFCI devices on the PV array to trip. If the arcing signature crosstalks from the string with the arc-fault via conduction or RF electromagnetic coupling, the location of the arc-fault cannot be easily determined and safe PV generators will be disconnected. Sandia National Laboratories collaborated with Texas Instruments to perform a series of nuisance trip scenarios with different PV configurations. Experimental results on a 2-string array showed arc detection on the faulted string occurred an average of 19.5 ms before unfaulted stringbut in some cases the AFCI on both strings would trip. © 2012 IEEE.

More Details

Arc-fault detector algorithm evaluation method utilizing prerecorded arcing signatures

Conference Record of the IEEE Photovoltaic Specialists Conference

Johnson, Jay; Kang, Jack

The 2011 National Electrical Code® Article 690.11 requires photovoltaic systems on or penetrating a building to include a DC arc-fault protection device. In order to satisfy this requirement, new Arc-Fault Detectors (AFDs) are being developed by multiple manufacturers including Sensata Technologies. Arc-fault detection algorithms often utilize the AC noise on the PV string to determine when arcing conditions exist in the DC system. In order to accelerate the development and testing of Sensata Technologies' arc-fault detection algorithm, Sandia National Laboratories (SNL) provided a number of data sets. These prerecorded 10 MHz baseline and arc-fault data sets included different inverter and arc-fault noise signatures. Sensata Technologies created a data evaluation method focused on regeneration of the prerecorded arcing and baseline test data with an arbitrary function generator, thereby reducing AFD development time. © 2012 IEEE.

More Details

Differentiating series and parallel photovoltaic arc-faults

Conference Record of the IEEE Photovoltaic Specialists Conference

Johnson, Jay; Montoya, Michael; McCalmont, Scott; Katzir, Gil; Fuks, Felipe; Earle, Justis; Fresquez, Armando; Gonzalez, Sigifredo; Granata, Jennifer

The 2011 National Electrical Code® requires PV DC series arc-fault protection but does not require parallel arc-fault protection. As a result, manufacturers are creating arc-fault circuit interrupters (AFCIs) which only safely de-energize the arcing circuit when a series arc-fault occurs. Since AFCI devices often use the broadband AC noise on the DC side of the PV system for detection and series and parallel arc-faults create similar frequency content, it is likely an AFCI device will open in the event of either arc-fault type. In the case of parallel arc-faults, opening the AFCI will not extinguish the arc and may make the arc worse, potentially creating a fire. Due to the fire risk from parallel arc-faults, Tigo Energy and Sandia National Laboratories studied series and parallel arc-faults and confirmed the noise signatures from the two arc-faults types are nearly identical. As a result, three alternative methods for differentiating parallel and series arc-faults are presented along with suggestions for arc-fault mitigation of each arc-fault type. © 2012 IEEE.

More Details
Results 1–200 of 211
Results 1–200 of 211