This report is a summary of a 3-year LDRD project that developed novel methods to detect faults in the electric power grid dramatically faster than today’s protection systems. Accurately detecting and quickly removing electrical faults is imperative for power system resilience and national security to minimize impacts to defense critical infrastructure. The new protection schemes will improve grid stability during disturbances and allow additional integration of renewable energy technologies with low inertia and low fault currents. Signal-based fast tripping schemes were developed that use the physics of the grid and do not rely on communication to reduce cyber risks for safely removing faults.
Dynamic operations of electric power switches in microgrid mode allows for distributed photovoltaic (PV) systems to support a critical load and enable the transfer of electrical power to non-critical loads. Instead of relying on an expensive system that includes a constant generation source (e.g. fossil fuel based generators), this work assess the potential balance of load and PV generation to properly charge a critical load battery while also supporting non-critical loads during the day. This work assumes that the battery is sized to only support the critical load and that the PV at the critical load is undersized. To compensate for the limited power capacity, a battery charging algorithm predicts and defines battery demand throughout the day; a particle swarm optimization (PSO) scheme connects and disconnects switch sections inside a distribution system with the objective of minimizing the difference between load and generation. The PSO reconfiguration scheme allows for continuous operations of a critical load as well as inclusion of non-critical loads.
The integration of renewable and distributed energy resources to the electric power system is expected to increase, particularly at the distribution level. As a consequence, the grid will become more modular consisting of many interconnected microgrids. These microgrids will likely evolve from existing distribution feeders and hence be unbalanced in nature. As the world moves towards cleaner and distributed generation, microgrids that are 100% inverter sourced will become more commonplace. To increase resiliency and reliability, these microgrids will need to operate in both grid-connected and islanded modes. Protection and control of these microgrids needs to be studied in real-time to test and validate possible solutions with hardware-in-the-loop (HIL) and real communication delays. This paper describes the creation of a real-time microgrid test bed based on the IEEE 13-bus distribution system using the RTDS platform. The inverter models with grid-forming and grid-following control schemes are discussed. Results highlighting stable operation, power sharing, and fault response are shown.
This paper presents a new method for detecting power quality disturbances, such as faults. The method is based on the dynamic mode decomposition (DMD)-a data-driven method to estimate linear dynamics whose eigenvalues and eigenvectors approximate those of the Koopman operator. The proposed method uses the real part of the main eigenvalue estimated by the DMD as the key indicator that a power quality event has occurred. The paper shows how the proposed method can be used to detect events using current and voltage signals to distinguish different faults. Because the proposed method is window-based, the effect that the window size has on the performance of the approach is analyzed. In addition, a study on the effect that noise has on the proposed approach is presented.
As a result of the increase in penetration of inverter-based generation such as wind and solar, the dynamics of the grid are being modified. These modifications may threaten the stability of the power system since the dynamics of these devices are completely different from those of rotating generators. Protection schemes need to evolve with the changes in the grid to successfully deliver their objectives of maintaining safe and reliable grid operations. This paper explores the theory of traveling waves and how they can be used to enable fast protection mechanisms. It surveys a list of signal processing methods to extract information on power system signals following a disturbance. The paper also presents a literature review of traveling wave-based protection methods at the transmission and distribution levels of the grid and for AC and DC configurations. The paper then discusses simulations tools to help design and implement protection schemes. A discussion of the anticipated evolution of protection mechanisms with the challenges facing the grid is also presented.
Power outages are a challenge that utility companies must face, with the potential to affect millions of customers and cost billions in damage. For this reason, there is a need for developing approaches that help understand the effects of fault conditions on the power grid. In distribution circuits with high renewable penetrations, the fault currents from DER equipment can impact coordinated protection scheme implementations so it is critical to accurately analyze fault contributions from DER systems. To do this, MATLAB/Simulink/RT-Labs was used to simulate the reduced-order distribution system and three different faults are applied at three different bus locations in the distribution system. The use of Real-Time (RT) Power Hardware-in-the-Loop (PHIL) simulations was also used to further improve the fidelity of the model. A comparison between OpenDSS simulation results and the Opal-RT experimental fault currents was conducted to determine the steady-state and dynamic accuracy of each method as well as the response of using simulated and hardware PV inverters. It was found that all methods were closely correlated in steady-state, but the transient response of the inverter was difficult to capture with a PV model and the physical device behavior could not be represented completely without incorporating it through PHIL.
In this report we focus on analyzing current-controlled PV inverters behaviour under faults in order to develop fault detection schemes for microgrids with high PV penetration. Inverter model suitable for steady state fault studies is presented and the impact of PV inverters on two protection elements is analyzed. The studied protection elements are superimposed quantities based directional element and negative sequence directional element. Additionally, several non-overcurrent fault detection schemes are discussed in this report for microgrids with high PV penetration. A detailed time-domain simulation study is presented to assess the performance of the presented fault detection schemes under different microgrid modes of operation.