Publications

Results 1–25 of 42
Skip to search filters

Crystallographic effects on transgranular chloride-induced stress corrosion crack propagation of arc welded austenitic stainless steel

npj Materials Degradation

Qu, Haozheng J.; Tao, Fei; Gu, Nianju; Montoya, Timothy M.; Taylor, Jason M.; Schaller, Rebecca S.; Schindelholz, Eric; Wharry, Janelle P.

The effect of crystallography on transgranular chloride-induced stress corrosion cracking (TGCISCC) of arc welded 304L austenitic stainless steel is studied on >300 grains along crack paths. Schmid and Taylor factor mismatches across grain boundaries (GBs) reveal that cracks propagate either from a hard to soft grain, which can be explained merely by mechanical arguments, or soft to hard grain. In the latter case, finite element analysis reveals that TGCISCC will arrest at GBs without sufficient mechanical stress, favorable crystallographic orientations, or crack tip corrosion. GB type does not play a significant role in determining TGCISCC cracking behavior nor susceptibility. TGCISCC crack behaviors at GBs are discussed in the context of the competition between mechanical, crystallographic, and corrosion factors.

More Details

FY2022 Status Report: Cold Spray for Canister SCC Mitigation and Repair

Schaller, Rebecca S.; Karasz, Erin K.; Montoya-X, Timothy M.; Taylor, Jason M.; Ross, Kenneth R.

This progress report describes work performed during FY22 at Sandia National Laboratories (SNL) to assess the corrosion performance of cold spray coatings to enable optimization of cold spray for the purposes of mitigation and/or repair of potentially susceptible regions, corrosion, or stress corrosion cracking (SCC) in austenitic stainless steel for spent nuclear fuel (SNF) storage. Of particular concern is SCC, by which a through-wall crack could potentially form in a canister outer wall over time intervals that may be shorter than possible dry storage times. In FY21, initial corrosion explorations of cold spray coating were evaluated and in FY22, an expanded set of cold spray coatings with in-depth analysis of post-exposure accelerated testing was explored. Additionally, relevant atmospheric exposure testing was carried out and initial results are presented herein. The corrosion attack from the accelerated testing and more realistic atmospheric exposures environments were compared to identify potentially deleterious factors for corrosion as well as help to understand the applicability of accelerated testing for cold spray optimization. This initial analysis will help to enable optimization of the corrosion resistance cold spray, one of the more promising coating and repair techniques, for potential application in an SNF environment. Learnings from both are summarized, and implications and future work are presented in this report.

More Details

Stress corrosion cracking mechanism of cold spray coating on a galvanically similar substrate

Materials Science and Engineering: A

Qu, Haozheng J.; Srinivasan, Jayendran; Zhao, Yangyang; Mao, Keyou S.; Taylor, Jason M.; Marino, Gabriella; Montoya, Timothy M.; Johnson, Kyle; Locke, Jenifer S.; Schaller, Rebecca S.; Schindelholz, Eric; Wharry, Janelle P.

The chloride-induced stress corrosion cracking (CISCC) mechanism of cold spray (CS) coating on a galvanically similar substrate is investigated. Arc welded 304L stainless steel (SS) specimens are loaded into four-point bend fixtures, cold sprayed with 304L SS, then immersed in boiling MgCl2. Interconnected porosity forms through crevice corrosion along CS splat boundaries, allowing corrosive species to penetrate through the CS layer. Nevertheless, the substrate is resistant to CISCC likely because of compressive stress introduced by peening during CS particle impacts. These findings underscore the importance of residual stress in the environmental degradation of CS coatings or repairs of engineering structures.

More Details

Measuring the Residual Stress and Stress Corrosion Cracking Susceptibility of Additively Manufactured 316L by ASTM G36-94

Corrosion

Karasz, Erin K.; Taylor, Jason M.; Autenrieth, David M.; Reu, Phillip L.; Johnson, Kyle J.; Melia, Michael A.; Noell, Philip N.

Residual stress is a contributor to stress corrosion cracking (SCC) and a common byproduct of additive manufacturing (AM). Here the relationship between residual stress and SCC susceptibility in laser powder bed fusion AM 316L stainless steel was studied through immersion in saturated boiling magnesium chloride per ASTM G36-94. The residual stress was varied by changing the sample height for the as-built condition and additionally by heat treatments at 600°C, 800°C, and 1,200°C to control, and in some cases reduce, residual stress. In general, all samples in the as-built condition showed susceptibility to SCC with the thinner, lower residual stress samples showing shallower cracks and crack propagation occurring perpendicular to melt tracks due to local residual stress fields. The heat-treated samples showed a reduction in residual stress for the 800°C and 1,200°C samples. Both were free of cracks after >300 h of immersion in MgCl2, while the 600°C sample showed similar cracking to their as-built counterpart. Geometrically necessary dislocation (GND) density analysis indicates that the dislocation density may play a major role in the SCC susceptibility.

More Details

Marine Atmospheric Corrosion of Additively Manufactured Stainless Steels

Corrosion

Melia, Michael A.; Duran, Jesse D.; Taylor, Jason M.; Presuel-Moreno, Francisco; Schaller, Rebecca S.; Schindelholz, Eric J.

Additively manufactured (AM) stainless steels (SSs) exhibit numerous microstructural differences compared to their wrought counterparts, such as Cr-enriched dislocation cell structures. The influence these unique features have on a SSs corrosion resistance are still under investigation with most current works limited to laboratory experiments. The work herein shows the first documented study of AM 304L and 316L exposed to a severe marine environment on the eastern coast of Florida with comparisons made to wrought counterparts. Coupons were exposed for 21 months and resulted in significant pitting corrosion to initiate after 1 month of exposure for all conditions. At all times, the AM coupons exhibited lower average and maximum pit depths than their wrought counterparts. After 21 months, pits on average were 4 μm deep for AM 316L specimen and 8 μm deep for wrought specimen. Pits on the wrought samples tended to be nearly hemispherical and polished with some pits showing crystallographic attack while pits on AM coupons exhibited preferential attack at melt pool boundaries and the cellular microstructure.

More Details

Long-Term Effects of Humidity on Stainless Steel Pitting in Sea Salt Exposures

Journal of the Electrochemical Society

Srinivasan, J.; Weirich, T.D.; Marino, G.A.; Annerino, A.R.; Taylor, Jason M.; Noell, Philip N.; Griego, J.J.M.; Schaller, Rebecca S.; Bryan, C.R.; Locke, J.S.; Schindelholz, E.J.

Ground 304 stainless steel (SS) samples were exposed to sea salt particles at 35 °C and two relative humidity (RH) levels for durations ranging from 1 week to 2 years. For all exposure times, pit number density and total pit volume at 40% RH were observed to be considerably greater than those at 76% RH. Statistical analysis of distributions of pit populations for both RH conditions showed that pit number density and total pit volume increased rapidly at first but slowed as exposure time increased. Cross-hatched features were observed in the 40% RH pits while ellipsoidal, faceted pits were observed at 76% RH. Optical profilometry indicated that most pits were not hemispherical. X-ray tomography provided evidence of undercutting and fissures. Piecewise curve fitting modeled the 40% RH data closely, predicting that corrosion damage would eventually plateau. However, a similar treatment of the 76% RH data suggested that corrosion damage would continuously increase, which implied that the piecewise power-law fit was limited in its ability to model atmospheric corrosion generally. Based on these observations, the operative mechanisms determining long-term corrosion behavior were hypothesized to be different depending on the RH of exposure.

More Details

Stability of sea-salt deliquescent brines on heated surfaces of SNF dry storage canisters

International High-Level Radioactive Waste Management 2019, IHLRWM 2019

Bryan, Charles R.; Schindelholz, Eric J.; Knight, Andrew W.; Taylor, Jason M.; Dingreville, Remi P.

For long-term storage, spent nuclear fuel (SNF) is placed in dry storage systems, commonly consisting of welded stainless steel canisters enclosed in ventilated overpacks. Choride-induced stress corrosion cracking (CISCC) of these canisters may occur due to the deliquescence of sea-salt aerosols as the canisters cool. Current experimental and modeling efforts to evaluate canister CISCC assume that the deliquescent brines, once formed, persist on the metal surface, without changing chemical or physical properties. Here we present data that show that magnesium chloride rich-brines, which form first as the canisters cool and sea-salts deliquesce, are not stable at elevated temperatures, degassing HCl and converting to solid carbonates and hydroxychloride phases, thus limiting conditions for corrosion. Moreover, once pitting corrosion begins on the metal surface, oxygen reduction in the cathode region surrounding the pits produces hydroxide ions, increasing the pH under some experimental conditions, leads to precipitation of magnesium hydroxychloride hydrates. Because magnesium carbonates and hydroxychloride hydrates are less deliquescent than magnesium chloride, precipitation of these compounds causes a reduction in the brine volume on the metal surface, potentially limiting the extent of corrosion. If taken to completion, such reactions may lead to brine dry-out, and cessation of corrosion.

More Details

The role of microstructure and surface finish on the corrosion of selective laser melted 304L

Journal of the Electrochemical Society

Schaller, Rebecca F.; Mishra, Ajit; Rodelas, Jeffrey R.; Taylor, Jason M.; Schindelholz, Eric J.

The corrosion behavior of selective laser melted (SLM) 304L was investigated and compared to conventional wrought 304L in aqueous chloride and acidic solutions. Through immersed electrochemical testing and exposure in acidic solutions, the SLM 304L exhibited superior pitting resistance in the polished state compared to wrought 304L. However, the surface condition of the SLM material had a great impact on its corrosion resistance, with the grit-blasted condition exhibiting severely diminished pitting resistance. Local scale, capillary micro-electrochemical and scanning electrochemical microscopy investigations, identified porosity as a contributing factor to decreased corrosion resistance. Preferential corrosion attack was not observed to be related to the characteristic underlying cellular microstructure produced through SLM processing. This study highlights the effects of SLM microstructural features on corrosion resistance, specifically the substantial influence of surface finish on SLM corrosion behavior and the need for development and optimization of processing techniques to improve surface finish.

More Details

Corrosion properties of powder bed fusion additively manufactured 17-4 PH stainless steel

Corrosion

Schaller, Rebecca S.; Taylor, Jason M.; Rodelas, Jeffrey R.; Schindelholz, Eric J.

The corrosion susceptibility of a laser powder bed fusion (LPBF) additively manufactured alloy, UNS S17400 (17-4 PH), was explored compared to conventional wrought material. Microstructural characteristics were characterized and related to corrosion behavior in quiescent, aqueous 0.6 M NaCl solutions. Electrochemical measurements demonstrated that the LPBF 17-4 PH alloy exhibited a reduced passivity range and active corrosion compared to its conventional wrought counterpart. A microelectrochemical cell was used to further understand the effects of the local scale and attributed the reduced corrosion resistance of the LPBF material to pores with diameters ≥50 μm.

More Details
Results 1–25 of 42
Results 1–25 of 42