Publications

7 Results
Skip to search filters

Structure - property relationship of permutite-like amorphous silicates, Nax+2yM3+xSi1-xO2+y(M3+= Al, Mn, Fe, Y), for ion-exchange reactions

Proposed for publication in Chemistry of Materials.

Nenoff, T.M.; Pless, Jason D.

A series of amorphous silicate materials with the general formula Na{sub x+2y}M{sub x}{sup 3+}Si{sub 1-x}O{sub 2+y}(M{sup 3+} = Al, Mn, Fe, Y) were studied. Samples were synthesized by a precipitation reaction at room temperature. The results indicate that the ion-exchange capacity (IEC) decreases as follows: Al > Fe > Mn > Y. Additionally, the IEC increases with increasing aluminum concentration. Structural studies show that the relative amount of octahedrally coordinated aluminum increases with increasing Al content, as does the total amount of AlO{sub 4} species increases. The data suggest that the IEC value of these amorphous aluminosilicates is dependent on the tetrahedrally coordinated aluminum. Regeneration of the Al-silicate with acetic acid does not decrease the IEC significantly.

More Details

Desalination of brackish waters using ion exchange media

Proposed for publication in Desalination.

Nenoff, T.M.; Pless, Jason D.; Voigt, James A.; Sipola, Diana L.; Krumhansl, James L.

An environmentally friendly method and materials study for desalinating inland brackish waters (i.e., coal bed methane produced waters) using a set of ion-exchange materials is presented. This desalination process effectively removes anions and cations in separate steps with minimal caustic waste generation. The anion-exchange material, hydrotalcite (HTC), exhibits an ion-exchange capacity (IEC) of {approx} 3 mequiv g{sup -1}. The cation-exchange material, an amorphous aluminosilicate permutite-like material, (Na{sub x+2y}Al{sub x}Si{sub 1-x}O{sub 2+y}), has an IEC of {approx}2.5 mequiv g{sup -1}. These ion-exchange materials were studied and optimized because of their specific ion-exchange capacity for the ions of interest and their ability to function in the temperature and pH regions necessary for cost and energy effectiveness. Room temperature, minimum pressure column studies (once-pass through) on simulant brackish water (total dissolved solids (TDS) = 2222 ppm) resulted in water containing TDS = 25 ppm. A second once-pass through column study on actual produced water (TDS = {approx}11,000) with a high carbonate concentration used an additional lime softening step and resulted in a decreased TDS of 600 ppm.

More Details

Thermochemistry of hydrotalcite-like phases intercalated with CO32-, NO3-, Cl-, I-, and ReO4-

Proposed for publication in Chemical Materials.

Nenoff, T.M.; Pless, Jason D.

The enthalpies of formation of hydrotalcite-like phases containing Mg and Al and intercalated with NO{sub 3}{sup -}, Cl{sup -}, I{sup -}, ReO{sub 4}{sup -}, or CO{sub 3}{sup 2-} were determined using high-temperature oxide melt and room-temperature acid solution calorimetry. The relative stability of phases bearing the various anions was gauged by comparing the enthalpy of formation from the single-cation components ({Delta}{sub f}H{sup scc}). Trends relating {Delta}{sub f}H{sup scc} to the nature of intercalating anions (halides, NO{sub 3}{sup -}, and CO{sub 3}{sup 2-}) show small stabilization from the mechanical mixtures of single-cation components. The aim of this study was to relate the enthalpy of formation to the nature of interlayer bonding in hydrotalcite-like compounds (HTLCs) bearing various anions, to uncover trends in the relative aqueous solubilities of these phases. The entropy of formation of these compounds was estimated using an approximation based on third-law entropy measurements for the compound Mg{sub 0.74}Al{sub 0.26}(OH){sub 2}(CO{sub 3}){sub 0.13} {center_dot} 0.39H{sub 2}O which were performed in a previous study. This approximation for the third-law entropy was combined with the enthalpy data from our calorimetric measurements performed in this work in order to calculate the standard-state free energy of formation for the HTLCs. The solubility products for the compounds investigated in this study were calculated from these free energies of formation and were used in geochemical calculations. The results of these calculations support our previous hypothesis that carbonate-intercalated HTLCs are less soluble than phases bearing other anions such as nitrates and halides. We suspect that the solubilities of HTLCs bearing anions other than carbonate may correspond to the solubilities of single-cation phases bearing the same anions.

More Details

Desalination of brackish ground waters and produced waters using in-situ precipitation

Nenoff, T.M.; Sattler, Allan R.; Pless, Jason D.; Krumhansl, James L.; Voigt, James A.

The need for fresh water has increased exponentially during the last several decades due to the continuous growth of human population and industrial and agricultural activities. Yet existing resources are limited often because of their high salinity. This unfavorable situation requires the development of new, long-term strategies and alternative technologies for desalination of saline waters presently not being used to supply the population growth occurring in arid regions. We have developed a novel environmentally friendly method for desalinating inland brackish waters. This process can be applied to either brackish ground water or produced waters (i.e., coal-bed methane or oil and gas produced waters). Using a set of ion exchange and sorption materials, our process effectively removes anions and cations in separate steps. The ion exchange materials were chosen because of their specific selectivity for ions of interest, and for their ability to work in the temperature and pH regions necessary for cost and energy effectiveness. For anion exchange, we have focused on hydrotalcite (HTC), a layered hydroxide similar to clay in structure. For cation exchange, we have developed an amorphous silica material that has enhanced cation (in particular Na{sup +}) selectivity. In the case of produced waters with high concentrations of Ca{sup 2+}, a lime softening step is included.

More Details
7 Results
7 Results