Publications

15 Results
Skip to search filters

LNG cascading damage study. Volume I, fracture testing report

Kalan, Robert K.; Petti, Jason P.

As part of the liquefied natural gas (LNG) Cascading Damage Study, a series of structural tests were conducted to investigate the thermal induced fracture of steel plate structures. The thermal stresses were achieved by applying liquid nitrogen (LN{sub 2}) onto sections of each steel plate. In addition to inducing large thermal stresses, the lowering of the steel temperature simultaneously reduced the fracture toughness. Liquid nitrogen was used as a surrogate for LNG due to safety concerns and since the temperature of LN{sub 2} is similar (-190 C) to LNG (-161 C). The use of LN{sub 2} ensured that the tests could achieve cryogenic temperatures in the range an actual vessel would encounter during a LNG spill. There were four phases to this test series. Phase I was the initial exploratory stage, which was used to develop the testing process. In the Phase II series of tests, larger plates were used and tested until fracture. The plate sizes ranged from 4 ft square pieces to 6 ft square sections with thicknesses from 1/4 inches to 3/4 inches. This phase investigated the cooling rates on larger plates and the effect of different notch geometries (stress concentrations used to initiate brittle fracture). Phase II was divided into two sections, Phase II-A and Phase II-B. Phase II-A used standard A36 steel, while Phase II-B used marine grade steels. In Phase III, the test structures were significantly larger, in the range of 12 ft by 12 ft by 3 ft high. These structures were designed with more complex geometries to include features similar to those on LNG vessels. The final test phase, Phase IV, investigated differences in the heat transfer (cooling rates) between LNG and LN{sub 2}. All of the tests conducted in this study are used in subsequent parts of the LNG Cascading Damage Study, specifically the computational analyses.

More Details

Finite element analysis of the Arquin-designed CMU wall under a dynamic (blast) load

Lopez Mestre, Carlos L.; Petti, Jason P.

The Arquin Corporation designed a CMU (concrete masonry unit) wall construction and reinforcement technique that includes steel wire and polymer spacers that is intended to facilitate a faster and stronger wall construction. Since the construction method for an Arquin-designed wall is different from current wall construction practices, finite element computer analyses were performed to estimate the ability of the wall to withstand a hypothetical dynamic load, similar to that of a blast from a nearby explosion. The response of the Arquin wall was compared to the response of an idealized standard masonry wall exposed to the same dynamic load. Results from the simulations show that the Arquin wall deformed less than the idealized standard wall under such loading conditions. As part of a different effort, Sandia National Laboratories also looked at the relative static response of the Arquin wall, results that are summarized in a separate SAND Report.

More Details

Structural integrity analysis of the degraded drywell containment at the Oyster Creek Nuclear generating station

Petti, Jason P.

This study examines the effects of the degradation experienced in the steel drywell containment at the Oyster Creek Nuclear Generating Station. Specifically, the structural integrity of the containment shell is examined in terms of the stress limits using the ASME Boiler and Pressure Vessel (B&PV) Code, Section III, Division I, Subsection NE, and examined in terms of buckling (stability) using the ASME B&PV Code Case N-284. Degradation of the steel containment shell (drywell) at Oyster Creek was first observed during an outage in the mid-1980s. Subsequent inspections discovered reductions in the shell thickness due to corrosion throughout the containment. Specifically, significant corrosion occurred in the sandbed region of the lower sphere. Since the presence of the wet sand provided an environment which supported corrosion, a series of analyses were conducted by GE Nuclear Energy in the early 1990s. These analyses examined the effects of the degradation on the structural integrity. The current study adopts many of the same assumptions and data used in the previous GE study. However, the additional computational recourses available today enable the construction of a larger and more sophisticated structural model.

More Details
15 Results
15 Results