This project is intended to support the development of new traction drive systems that meet the targets of 100 kW/L for power electronics and 50 kW/L for electric machines with reliable operation to 300,000 miles. To meet these goals, new designs must be identified that make use of state-of-the-art and next-generation electronic materials and design methods. Designs must exploit synergies between components, for example converters designed for high-frequency switching using wide band gap devices and ceramic capacitors. This project includes: (1) a survey of available technologies; (2) the development of design tools that consider the converter volume and performance; (3) exercising the design software to evaluate performance gaps and predict the impact of certain technologies and design approaches, i.e. GaN semiconductors, ceramic capacitors, and select topologies; and (4) building and testing hardware prototypes to validate models and concepts. Early instantiations of the design tools enable co-optimization of the power module and passive elements and provide some design guidance; later instantiations will enable the co-optimization of inverter and machine. Prototype testing begins with evaluation of simpler conversion topologies (i.e. the half-bridge boost converter) and progresses with fabrication of prototype inverter drives.
Optimized designs were achieved using a genetic algorithm to evaluate multi-objective trade space, including Mean-Time-Between-Failure (MTBF) and volumetric power density. This work provides a foundational platform that can be used to optimize additional power converters, such as an inverter for the EV traction drive system as well as trade-offs in thermal management due to the use of different device substrate materials.
Forced oscillations in power systems are of particular interest when they interact and reinforce inter-area oscillations. This paper determines how a previously proposed inter-area damping controller mitigates forced oscillations. The damping controller modulates active power on the Pacific DC Intertie (PDCI) based on phasor measurement units (PMU) frequency measurements. The primary goal of the controller is to improve the small signal stability of the north south B mode in the North American Western Interconnection (WI). The paper presents small signal stability analysis in a reduced order system, time-domain simulations of a detailed representation of the WI and actual system test results to demonstrate that the PDCI damping controller provides effective damping to forced oscillations in the frequency range below 1 Hz.
The U.S. Navy is investing in the development of new technologies that broaden warship capabilities and maintain U.S. naval superiority. Specifically, Naval Sea Systems Command (NAVSEA) is supporting the development of power systems technologies that enable the Navy to realise an all-electric warship. A challenge to fielding an all-electric power system architecture includes minimising the size of energy storage systems (ESS) while maintaining the response times necessary to support potential pulsed loads. This work explores the trade-off between energy storage size requirements (i.e. mass) and performance (i.e. peak power, energy storage, and control bandwidth) in the context of a power system architecture that meets the needs of the U.S. Navy. In this work, the simulated time domain responses of a representative power system were evaluated under different loading conditions and control parameters, and the results were considered in conjunction with sizing constraints of and estimated specific power and energy densities of various storage technologies. The simulation scenarios were based on representative operational vignettes, and a Ragone plot was used to illustrate the intersection of potential energy storage sizing with the energy and power density requirements of the system. Furthermore, the energy storage control bandwidth requirements were evaluated by simulation for different loading scenarios. Two approaches were taken to design an ESS: one based only on time domain power and energy requirements from simulation and another based on bandwidth (specific frequency) limitations of various technologies.
This paper describes the design and implementation of a proof-of-concept Pacific dc Intertie (PDCI) wide area damping controller and includes system test results on the North American Western Interconnection (WI). To damp inter-area oscillations, the controller modulates the power transfer of the PDCI, a ±500 kV dc transmission line in the WI. The control system utilizes real-time phasor measurement unit (PMU) feedback to construct a commanded power signal which is added to the scheduled power flow for the PDCI. After years of design, simulations, and development, this controller has been implemented in hardware and successfully tested in both open and closed-loop operation. The most important design specifications were safe, reliable performance, no degradation of any system modes in any circumstances, and improve damping to the controllable modes in the WI. The main finding is that the controller adds significant damping to the modes of the WI and does not adversely affect the system response in any of the test cases. The primary contribution of this paper, to the state of the art research, is the design methods and test results of the first North American real-time control system that uses wide area PMU feedback.
Pickrell, Gregory P.; Neely, Jason C.; flicker, jack f.; Atcitty, Stanley A.; Mar, Alan M.; Schrock, Emily S.; Lehr, Jane M.; Allerman, Andrew A.; Hjalmarson, Harold P.; Kaplar, Robert J.
This paper presents simulation results of a control scheme for damping inter-area oscillations using high-voltage DC (HVDC) power modulation. The control system utilizes realtime synchrophasor feedback to construct a supplemental commanded power signal for the Pacific DC Intertie (PDCI) in the North American Western Interconnection (WI). A prototype of this controller has been implemented in hardware and, after multiple years of development, successfully tested in both open and closed-loop operation. This paper presents simulation results of the WI during multiple severe contingencies with the damping controller in both open and closed-loop. The primary results are that the controller adds significant damping to the controllable modes of the WI and that it does not adversely affect the system response in any of the simulated cases. Furthermore, the simulations show that a feedback signal composed of the frequency difference between points of measurement near the Washington-Oregon border and the California-Oregon border can be employed with similar results to a feedback signal constructed from measurements taken near the Washington-Oregon border and southern California. This is an important consideration because it allowed the control system to be designed without relying upon cross-system measurements, which would have introduced significant additional delay.
Distributed control compensation based on local and remote sensor feedback can improve small-signal stability in large distributed systems, such as electric power systems. Long distance remote measurements, however, are potentially subject to relatively long and uncertain network latencies. In this work, the issue of asymmetrical network latencies is considered for an active damping application in a two-area electric power system. The combined effects of latency and gain are evaluated in time domain simulation and in analysis using root-locus and the maximum singular value of the input sensitivity function. The results aid in quantifying the effects of network latencies and gain on system stability and disturbance rejection.
This letter presents a new frequency control strategy that takes advantage of communications and fast responding resources such as photovoltaic generation, energy storage, wind generation, and demand response, termed collectively as converter interfaced generators (CIGs). The proposed approach uses an active monitoring of power imbalances to rapidly redispatch CIGs. This approach differs from previously proposed frequency control schemes in that it employs feed-forward control based on a measured power imbalance rather than relying on a frequency measurement. Time-domain simulations of the full Western Electricity Coordinating Council system are conducted to demonstrate the effectiveness of the proposed method, showing improved performance.
A system is presented that is capable of measuring subnanosecond reverse recovery times of diodes in wide-bandgap materials over a wide range of forward biases (0 - 1 A) and reverse voltages (0 - 10 kV). The system utilizes the step recovery technique and comprises a cable pulser based on a silicon (Si) Photoconductive Semiconductor Switch (PCSS) triggered with an Ultrashort Pulse Laser, a pulse charging circuit, a diode biasing circuit, and resistive and capacitive voltage monitors. The PCSS-based cable pulser transmits a 130 ps rise time pulse down a transmission line to a capacitively coupled diode, which acts as the terminating element of the transmission line. The temporal nature of the pulse reflected by the diode provides the reverse recovery characteristics of the diode, measured with a high bandwidth capacitive probe integrated into the cable pulser. This system was used to measure the reverse recovery times (including the creation and charging of the depletion region) for two Avogy gallium nitride diodes; the initial reverse recovery time was found to be 4 ns and varied minimally over reverse biases of 50-100 V and forward current of 1-100 mA.
This paper describes the initial open-loop operation of a prototype control system aimed at mitigating inter-area oscillations through active DC power modulation. The control system uses real-time synchrophasor feedback to construct a commanded power signal added to the scheduled power on the Pacific DC Intertie (PDCI) within the western North American power system (wNAPS). The control strategy is based upon nearly a decade of simulation, linear analysis, and actual system tests. The control system must add damping to all modes which are controllable and 'do no harm' to the AC grid. Tests were conducted in which the damping controller injected live probing signals into the PDCI controls to change the power flow on the PDCI by up to ±125 MW. While the probing tests are taking place, the damping controller recorded what it would have done if it were providing active damping. The tests demonstrate that the dynamic response of the DC system is highly desirable with a response time of 11 ms which is well within the desired range. The tests also verify that the overall transfer functions are consistent with past studies and tests. Finally, the tests show that the prototype controller behaves as expected and will improve damping in closed-loop operation.
To demonstrate and validate the performance of the wide-are a damping control system, the project plans to conduct closed-loop tests on the PDCI in summer/fall 2016. A test plan details the open and closed loop tests to be conducted on the P DCI using the wide-area damping control system. To ensure the appropriate level of preparedness, simulations were performed in order to predict and evaluate any possible unsafe operations before hardware experiments are attempted. This report contains the result s from these simulations using the power system dynamics software PSLF (Power System Load Flow, trademark of GE). The simulations use the WECC (Western Electricity Coordinating Council) 2016 light summer and heavy summer base cases.
Foulkes, Thomas F.; Foulkes, Thomas F.; Pilawa, Robert P.; Pilawa, Robert P.; Milkjovic, Nenad M.; Milkjovic, Nenad M.; Oh, Junho O.; Oh, Junho O.; Neely, Jason C.; Neely, Jason C.; Birbarah, Patrick B.; Birbarah, Patrick B.
Cavagnaro, Robert J.; Neely, Jason C.; Faÿ, Franois X.; Mendia, Joseba L.; Rea, Judith A.
Implications of conducting hardware-in-the-loop testing of a specific hydrokinetic turbine on controllable motor-generator sets or electromechanical emulation machines (EEMs) are explored. The emulator control dynamic equations are presented, methods for scaling turbine parameters are developed and evaluated, and experimental results are presented from three EEMs programmed to emulate the same vertical-axis fixed-pitch turbine. Although hardware platforms and control implementations varied, results show that each EEM is successful in emulating the turbine model at different power levels, thus demonstrating the general feasibility of the approach. However, performance of motor control under torque command, current command, or speed command differed. In a demonstration of the intended use of an EEM for evaluating a hydrokinetic turbine implementation, a power takeoff controller tracks the maximum power-point of the turbine in response to turbulence. Utilizing realistic inflow conditions and control laws, the emulator dynamic speed response is shown to agree well at low frequencies with numerical simulation but to deviate at high frequencies.
Increasing the penetration of distributed renewable sources, including photovoltaic (PV) sources, poses technical challenges for grid management. The grid has been optimized over decades to rely upon large centralized power plants with well-established feedback controls, but now non-dispatchable, renewable sources are displacing these controllable generators. This one-year study was funded by the Department of Energy (DOE) SunShot program and is intended to better utilize those variable resources by providing electric utilities with the tools to implement frequency regulation and primary frequency reserves using aggregated renewable resources, known as a virtual power plant. The goal is to eventually enable the integration of 100s of Gigawatts into US power systems.
The goal of this effort was to apply four potential control analysis/design approaches to the design of distributed grid control systems to address the impact of latency and communications uncertainty with high penetrations of photovoltaic (PV) generation. The four techniques considered were: optimal fixed structure control; Nyquist stability criterion; vector Lyapunov analysis; and Hamiltonian design methods. A reduced order model of the Western Electricity Coordinating Council (WECC) developed for the Matlab Power Systems Toolbox (PST) was employed for the study, as well as representative smaller systems (e.g., a two-area, three-area, and four-area power system). Excellent results were obtained with the optimal fixed structure approach, and the methodology we developed was published in a journal article. This approach is promising because it offers a method for designing optimal control systems with the feedback signals available from Phasor Measurement Unit (PMU) data as opposed to full state feedback or the design of an observer. The Nyquist approach inherently handles time delay and incorporates performance guarantees (e.g., gain and phase margin). We developed a technique that works for moderate sized systems, but the approach does not scale well to extremely large system because of computational complexity. The vector Lyapunov approach was applied to a two area model to demonstrate the utility for modeling communications uncertainty. Application to large power systems requires a method to automatically expand/contract the state space and partition the system so that communications uncertainty can be considered. The Hamiltonian Surface Shaping and Power Flow Control (HSSPFC) design methodology was selected to investigate grid systems for energy storage requirements to support high penetration of variable or stochastic generation (such as wind and PV) and loads. This method was applied to several small system models.
Increasing the penetration of distributed renewable sources, including photovoltaic (PV) generators, poses technical challenges for grid management. The grid has been optimized over decades to rely on large centralized power plants with well-established feedback controls. Conventional generators provide relatively constant dispatchable power and help to regulate both voltage and frequency. In contrast, photovoltaic (PV) power is variable, is only as predictable as the weather, and provides no control action. Thus, as conventional generation is displaced by PV power, utility operation stake holders are concerned about managing fluctuations in grid voltage and frequency. Furthermore, since the operation of these distributed resources are bound by certain rules that require they stop delivering power when measured voltage or frequency deviate from the nominal operating point, there are also concerns that a single grid event may cause a large fraction of generation to turn off, triggering a black out or break-up of an electric power system.
The high penetration of utility interconnected photovoltaic (PV) systems is causing heightened concern over the effect that variable renewable generation will have on the electrical power system (EPS). These concerns have initiated the need to amend the utility interconnection standard to allow advanced inverter control functionalities that provide: (1) reactive power control for voltage support, (2) real power control for frequency support and (3) better tolerance of grid disturbances. These capabilities are aimed at minimizing the negative impact distributed PV systems may have on EPS voltage and frequency. Unfortunately, these advanced control functions may interfere with island detection schemes, and further development of advanced inverter functions requires a study of the effect of advanced functions on the efficacy of antiislanding schemes employed in industry. This report summarizes the analytical, simulation and experimental work to study interactions between advanced inverter functions and anti-islanding schemes being employed in distributed PV systems.
The goal of this study was to evaluate the small signal and transient stability of the Western Electric- ity Coordinating Council (WECC) under high penetrations of renewable energy, and to identify control technologies that would improve the system performance. The WECC is the regional entity responsible for coordinating and promoting bulk electric system reliability in the Western Interconnection. Transient stability is the ability of the power system to maintain synchronism after a large disturbance while small signal stability is the ability of the power system to maintain synchronism after a small disturbance. Tran- sient stability analysis usually focuses on the relative rotor angle between synchronous machines compared to some stability margin. For this study we employed generator speed relative to system speed as a metric for assessing transient stability. In addition, we evaluated the system transient response using the system frequency nadir, which provides an assessment of the adequacy of the primary frequency control reserves. Small signal stability analysis typically identi es the eigenvalues or modes of the system in response to a disturbance. For this study we developed mode shape maps for the di erent scenarios. Prony analysis was applied to generator speed after a 1.4 GW, 0.5 second, brake insertion at various locations. Six di erent WECC base cases were analyzed, including the 2022 light spring case which meets the renewable portfolio standards. Because of the di culty in identifying the cause and e ect relationship in large power system models with di erent scenarios, several simulations were run on a 7-bus, 5-generator system to isolate the e ects of di erent con gurations. Based on the results of the study, for a large power system like the WECC, incorporating frequency droop into wind/solar systems provides a larger bene t to system transient response than replacing the lost inertia with synthetic inertia. From a small signal stability perspective, the increase in renewable penetration results in subtle changes to the system modes. In gen- eral, mode frequencies increase slightly, and mode shapes remain similar. The system frequency nadir for the 2022 light spring case was slightly lower than the other cases, largely because of the reduced system inertia. However, the nadir is still well above the minimum load shedding frequency of 59.5 Hz. Finally, several discrepancies were identi ed between actual and reported wind penetration, and additional work on wind/solar modeling is required to increase the delity of the WECC models.
This report contains the results of a research effort on advanced robot locomotion. The majority of this work focuses on walking robots. Walking robot applications include delivery of special payloads to unique locations that require human locomotion to exo-skeleton human assistance applications. A walking robot could step over obstacles and move through narrow openings that a wheeled or tracked vehicle could not overcome. It could pick up and manipulate objects in ways that a standard robot gripper could not. Most importantly, a walking robot would be able to rapidly perform these tasks through an intuitive user interface that mimics natural human motion. The largest obstacle arises in emulating stability and balance control naturally present in humans but needed for bipedal locomotion in a robot. A tracked robot is bulky and limited, but a wide wheel base assures passive stability. Human bipedal motion is so common that it is taken for granted, but bipedal motion requires active balance and stability control for which the analysis is non-trivial. This report contains an extensive literature study on the state-of-the-art of legged robotics, and it additionally provides the analysis, simulation, and hardware verification of two variants of a proto-type leg design.