Publications

Results 1–25 of 64
Skip to search filters

Targeting proteins to liquid-ordered domains in lipid membranes

Langmuir

Stachowiak, Jeanne C.; Hayden, Carl C.; Sanchez, Mari A.; Wang, Julia W.; Bunker, B.C.; Voigt, James A.; Sasaki, Darryl Y.

We demonstrate the construction of novel protein-lipid assemblies through the design of a lipid-like molecule, DPIDA, endowed with tail-driven affinity for specific lipid membrane phases and head-driven affinity for specific proteins. In studies performed on giant unilamellar vesicles (GUVs) with varying mole fractions of dipalymitoylphosphatidylcholine (DPPC), cholesterol, and diphytanoylphosphatidyl choline (DPhPC), DPIDA selectively partitioned into the more ordered phases, either solid or liquid-ordered (Lo) depending on membrane composition. Fluorescence imaging established the phase behavior of the resulting quaternary lipid system. Fluorescence correlation spectroscopy confirmed the fluidity of the Lo phase containing DPIDA. In the presence of CuCl2, the iminodiacetic acid (IDA) headgroup of DPIDA forms the Cu(II)-IDA complex that exhibits a high affinity for histidine residues. His-tagged proteins were bound specifically to domains enriched in DPIDA, demonstrating the capacity to target protein binding selectively to both solid and Lo phases. Steric pressure from the crowding of surface-bound proteins transformed the domains into tubules with persistence lengths that depended on the phase state of the lipid domains. © 2010 American Chemical Society.

More Details

Molecular nanocomposites

Voigt, James A.

The goals of this project are to understand the fundamental principles that govern the formation and function of novel nanoscale and nanocomposite materials. Specific scientific issues being addressed include: design and synthesis of complex molecular precursors with controlled architectures, controlled synthesis of nanoclusters and nanoparticles, development of robust two or three-dimensionally ordered nanocomposite materials with integrated functionalities that can respond to internal or external stimuli through specific molecular interactions or phase transitions, fundamental understanding of molecular self-assembly mechanisms on multiple length scales, and fundamental understanding of transport, electronic, optical, magnetic, catalytic and photocatalytic properties derived from the nanoscale phenomena and unique surface and interfacial chemistry for DOE's energy mission.

More Details

Oxalate co-precipitation synthesis of calcium zirconate and calcium titanate powders

Tuttle, Bruce T.; Sipola, Diana L.; Garino, Terry J.; Mahoney, Patrick M.; Rodriguez, Marko A.; Voigt, James A.

Fine powders of calcium zirconate (CaZrO{sub 3}, CZ) and calcium titanate (CaTiO{sub 3}, CT) were synthesized using a nonaqueous oxalate co-precipitation route from Ca(NO{sub 3}){sub 2}{center_dot}4 H{sub 2}O and group(IV) n-butoxides (Ti(OBu{sup n}){sub 4} or Zr(OBu{sup n}){sub 4}). Several reaction conditions and batch sizes (2-35 g) were explored to determine their influence on final particle size, morphology, and phase. Characterization of the as-prepared oxalate precursors, oven dried oxalate precursors (60-90 C), and calcined powders (635-900 C) were analyzed with TGA/DTA, XRD, TEM, and SEM. Densification and sintering studies on pressed CZ pellets at 1375 and 1400 C were also performed. Through the developed oxalate co-precipitation route, densification temperatures for CZ were lowered by 125 C from the 1500 C firing temperature required for conventional mixed oxide powders. Low field electrical tests of the CZ pellets indicated excellent dielectric properties with dielectric constants of {approx}30 and a dissipation factor of 0.0004 were measured at 1 kHz.

More Details

Tunable arrays of ZnO nanorods and nanoneedles via seed layer and solution chemistry

Crystal Growth and Design

Lee, Yun J.; Sounart, Thomas L.; Liu, Jun; Spoerke, Erik D.; McKenzie, Bonnie B.; Hsu, Julia W.; Voigt, James A.

We have systematically studied the effect of pH and 1,3-diaminopropane additive concentration on the morphology of ZnO nanorod and nanoneedle arrays grown in aqueous solution using a variety of seed layers. Increase in the growth solution pH from 6.8 to 13.2 resulted in a near doubling of the growth rate in the [0001] direction possibly due to attractive interaction between the zinc species and the growth surface at high pH, leading to nanorod arrays with reduced faceting and higher aspect ratios. Increases in 1,3-diaminopropane concentration initially enhanced and subsequently inhibited growth of tapered ZnO nanoneedles on seed layers consisting of ZnO nanoparticles, oriented ZnO films, or columnar facets of ZnO microrods. The final nanoneedle dimensions, packing density, and alignment were strongly affected by 1,3-diaminopropane concentration and seed layer type, which can be explained in terms of the relative strength of zinc chelation by 1,3-diaminopropane, the areal density of seeds, and other factors. The precise tuning of ZnO crystalline morphology via the control of seeding and growth conditions may be beneficial to many potential applications that require these aligned crystalline nanostructures. © 2008 American Chemical Society.

More Details
Results 1–25 of 64
Results 1–25 of 64