Publications

2 Results
Skip to search filters

Analysis of Experimental Shock Propagation through a Diverse Set of Geometric Cavities Embedded in Lab-Scale Polymer Cubes

Nelsen, James M.; Guo, Shuyue G.; Chojnicki, Kirsten N.

Experiments were designed and conducted to investigate the impact that geometric cavities have on the transfer of energy from an embedded explosion to the surface of the physical domain. The experimental domains were fabricated as 3-inch polymer cubes, with varying cavity geometries centered in the cubes. The energy transfer, represented as a shock wave, was generated by the detonation of an exploding bridgewire at the center of the cavity. The shock propagation was tracked by schlieren imaging through the optically accessible polymer. The magnitude of energy transferred to the surface was recorded by an array of pressure sensors. A minimum of five experimental runs were conducted for each cavity geometry and statistical results were developed and compared. Results demonstrated the decoupling effect that geometric cavities produce on the energy field at the surface.

More Details

On identifying the specular reflection of sunlight in earth-monitoring satellite data

Jackson, Dale C.; Hohlfelder, Robert J.; Longenbaugh, Randolph S.; Nelsen, James M.

Among the background signals commonly seen by Earth-monitoring satellites is the specular reflection of sunlight off of Earth's surface, commonly referred to as a glint. This phenomenon, involving liquid or ice surfaces, can result in the brief, intense illumination of satellite sensors appearing from the satellite perspective to be of terrestrial origin. These glints are important background signals to be able to identify with confidence, particularly in the context of analyzing data from satellites monitoring for transient surface or atmospheric events. Here we describe methods for identifying glints based on the physical processes involved in their production, including spectral fitting and polarization measurements. We then describe a tool that, using the WGS84 spheroidal Earth model, finds the latitude and longitude on Earth where a reflection of this type could be produced, given input Sun and satellite coordinates. This tool enables the user to determine if the surface at the solution latitude and longitude is in fact reflective, thus identifying the sensor response as a true glint or an event requiring further analysis.

More Details
2 Results
2 Results