Calcium Manganite-Based Materials for High Temperature CSP Thermochemical Energy Storage
Abstract not provided.
Abstract not provided.
International Journal of Hydrogen Energy
A novel concept for coupling a thermochemical cycle with an electrochemical separation device for the generation of hydrogen from steam is reported and a thermodynamic analysis of the system is presented. In a conventional thermochemical cycle, an oxygen carrier material is thermally reduced, cooled, and then reoxidized in steam thereby generating hydrogen. However, this process often requires high temperatures (>1700 K) and/or low oxygen partial pressures (<0.001 atm) in order to meet thermodynamic requirements. Such extreme conditions can adversely affect the stability of the reactive oxides, reactor materials, and system efficiency. In our proposed technology, we seek to decrease the required reduction temperature by several hundred degrees Kelvin by relaxing the requirement for spontaneous oxidation reaction at atmospheric pressure. This is accomplished by incorporating a proton-conducting membrane (PCM) to separate hydrogen produced at equilibrium concentrations from reactant steam. We also suggest the use of mixed ionic-electronic conducting (MIEC) oxygen carrier materials that reduce through a continuum of oxidation states at lower temperatures (∼1200 °C). This concept allows the generation of a high-quality hydrogen stream while avoiding the challenging high temperatures/low partial pressures required in conventional water-splitting reaction schemes.
Abstract not provided.
Abstract not provided.
Water is the backbone of our economy - safe and adequate supplies of water are vital for agriculture, industry, recreation, and human consumption. While our supply of water today is largely safe and adequate, we as a nation face increasing water supply challenges in the form of extended droughts, demand growth due to population increase, more stringent health-based regulation, and competing demands from a variety of users. To meet these challenges in the coming decades, water treatment technologies, including desalination, will contribute substantially to ensuring a safe, sustainable, affordable, and adequate water supply for the United States. This overview documents Sandia National Laboratories' (SNL, or Sandia) Water Treatment Program which focused on the development and demonstration of advanced water purification technologies as part of the larger Sandia Water Initiative. Projects under the Water Treatment Program include: (1) the development of desalination research roadmaps (2) our efforts to accelerate the commercialization of new desalination and water treatment technologies (known as the 'Jump-Start Program),' (3) long range (high risk, early stage) desalination research (known as the 'Long Range Research Program'), (4) treatment research projects under the Joint Water Reuse & Desalination Task Force, (5) the Arsenic Water Technology Partnership Program, (6) water treatment projects funded under the New Mexico Small Business Administration, (7) water treatment projects for the National Energy Technology Laboratory (NETL) and the National Renewable Energy Laboratory (NREL), (8) Sandia- developed contaminant-selective treatment technologies, and finally (9) current Laboratory Directed Research and Development (LDRD) funded desalination projects.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
International Journal of Energy Research
Developing efficient thermal storage for concentrating solar power plants is essential to reducing the cost of generated electricity, extending or shifting the hours of operation, and facilitating renewable penetration into the grid. Perovskite materials of the CaBxMn1-xO3-δ family, where B=Al or Ti, promise improvements in cost and energy storage density over other perovskites currently under investigation. Thermogravimetric analysis of the thermal reduction and reoxidation of these materials was used to extract equilibrium thermodynamic parameters. The results demonstrate that these novel thermochemical energy storage media display the highest reaction enthalpy capacity for perovskites reported to date, with a reaction enthalpy of 390kJ/kg, a 56% increase over previously reported compositions.
ASME 2016 10th International Conference on Energy Sustainability, ES 2016, collocated with the ASME 2016 Power Conference and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology
In an effort to increase thermal energy storage densities and turbine inlet temperatures in concentrating solar power (CSP) systems, focus on energy storage media has shifted from molten salts to solid particles. These solid particles are stable at temperatures far greater than that of molten salts, allowing the use of efficient high-temperature turbines in the power cycle. Furthermore, many of the solid particles under development store heat via reversible chemical reactions (thermochemical energy storage, TCES) in addition to the heat they store as sensible energy. The heat-storing reaction is often the thermal reduction of a metal oxide. If coupled to an Air-Brayton system, wherein air is used as the turbine working fluid, the subsequent extraction of both reaction and sensible heat, as well as the transfer of heat to the working fluid, can be accomplished in a direct-contact, counter-flow reoxidation reactor. However, there are several design challenges unique to such a reactor, such as maintaining requisite residence times for reactions to occur, particle conveying and mitigation of entrainment, and the balance of kinetics and heat transfer rates to achieve reactor outlet temperatures in excess of 1200 °C. In this paper, insights to addressing these challenges are offered, and design and operational tradeoffs that arise in this highlycoupled system are introduced and discussed.
ASME 2016 10th International Conference on Energy Sustainability, ES 2016, collocated with the ASME 2016 Power Conference and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology
Thermochemical energy storage (TCES) offers the potential for greatly increased storage density relative to sensible-only energy storage. Moreover, heat may be stored indefinitely in the form of chemical bonds via TCES, accessed upon demand, and converted to heat at temperatures significantly higher than current solar thermal electricity production technology and is therefore well-suited to more efficient high-temperature power cycles. The PROMOTES effort seeks to advance both materials and systems for TCES through the development and demonstration of an innovative storage approach for solarized Air-Brayton power cycles and that is based on newly-developed redox-active metal oxides that are mixed ionic-electronic conductors (MIEC). In this paper we summarize the system concept and review our work to date towards developing materials and individual components.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
ASME 2015 9th International Conference on Energy Sustainability, ES 2015, collocated with the ASME 2015 Power Conference, the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum
Concentrating solar power systems coupled to energy storage schemes, e.g. storage of sensible energy in a heat transfer fluid, are attractive options to reduce the transient effects of clouding on solar power output and to provide power after sunset and before sunrise. Common heat transfer fluids used to capture heat in a solar receiver include steam, oil, molten salt, and air. These high temperature fluids can be stored so that electric power can be produced on demand, limited primarily by the size of the capacity and the energy density of the storage mechanism. Phase changing fluids can increase the amount of stored energy relative to non-phase changing fluids due to the heat of vaporization or the heat of fusion. Reversible chemical reactions can also store heat; an endothermic reaction captures the heat, the chemical products are stored, and an exothermic reaction later releases the heat and returns the chemical compound to its initial state. Ongoing research is investigating the scientific and commercial potential of such reaction cycles with, for example, reduction (endothermic) and re-oxidation (exothermic) of metal oxide particles. This study includes thermodynamic analyses and considerations for component sizing of concentrating solar power towers with redox active metal oxide based thermochemical storage to reach target electrical output capacities of 0.1 MW to 100 MW. System-wide analyses here use one-dimensional energy and mass balances for the solar field, solar receiver reduction reactor, hot reduced particle storage, re-oxidizer reactor, power block, cold particle storage, and other components pertinent to the design. This work is part of a US Department of Energy (DOE) SunShot project entitled High Performance Reduction Oxidation of Metal Oxides for Thermochemical Energy Storage (PROMOTES).
Mechanical Engineering
Abstract not provided.
Certain details of the additive manufacturing process known as selective laser melting (SLM) affect the performance of the final metal part. To unleash the full potential of SLM it is crucial that the process engineer in the field receives guidance about how to select values for a multitude of process variables employed in the building process. These include, for example, the type of powder (e.g., size distribution, shape, type of alloy), orientation of the build axis, the beam scan rate, the beam power density, the scan pattern and scan rate. The science-based selection of these settings con- stitutes an intrinsically challenging multi-physics problem involving heating and melting a metal alloy, reactive, dynamic wetting followed by re-solidification. In addition, inherent to the process is its considerable variability that stems from the powder packing. Each time a limited number of powder particles are placed, the stacking is intrinsically different from the previous, possessing a different geometry, and having a different set of contact areas with the surrounding particles. As a result, even if all other process parameters (scan rate, etc) are exactly the same, the shape and contact geometry and area of the final melt pool will be unique to that particular configuration. This report identifies the most important issues facing SLM, discusses the fundamental physics associated with it and points out how modeling can support the additive manufacturing efforts.
Abstract not provided.
Abstract not provided.