Publications

Results 1–50 of 90
Skip to search filters

LDRD 226360 Final Project Report: Simulated X-ray Diffraction and Machine Learning for Optimizing Dynamic Experiment Analysis

Ao, Tommy A.; Donohoe, Brendan D.; Martinez, Carianne M.; Knudson, Marcus D.; Montes de Oca Zapiain, David M.; Morgan, Dane M.; Rodriguez, Mark A.; Lane, James M.

This report is the final documentation for the one-year LDRD project 226360: Simulated X-ray Diffraction and Machine Learning for Optimizing Dynamic Experiment Analysis. As Sandia has successfully developed in-house X-ray diffraction tools for study of atomic structure in experiments, it has become increasingly important to develop computational analysis methods to support these experiments. When dynamically compressed lattices and orientations are not known a priori, the identification requires a cumbersome and sometimes intractable search of possible final states. These final states can include phase transition, deformation and mixed/evolving states. Our work consists of three parts: (1) development of an XRD simulation tool and use of traditional data science methods to match XRD patterns to experiments; (2) development of ML-based models capable of decomposing and identifying the lattice and orientation components of multicomponent experimental diffraction patterns; and (3) conducting experiments which showcase these new analysis tools in the study of phase transition mechanisms. Our target material has been cadmium sulfide, which exhibits complex orientation-dependent phase transformation mechanisms. In our current one-year LDRD, we have begun the analysis of high-quality c-axis CdS diffraction data from DCS and Thor experiments, which had until recently eluded orientation identification.

More Details

Characterization of Tri-lab β-Tin (Sn)

Lim, Hojun L.; Casias, Zachary C.; Carroll, Jay D.; Battaile, Corbett C.; Lane, James M.; Fensin, Saryu J.

This report documents details of the microstructure and mechanical properties of -tin (Sn), that is used in the Tri-lab (Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL), Sandia National Laboratories (SNL)) collaboration project on Multi-phase Tin Strength. We report microstructural features detailing the crystallographic texture and grain morphology of as-received -tin from electron back scatter diffraction (EBSD). Temperature and strain rate dependent mechanical behavior was investigated by multiple compression tests at temperatures of 200K to 400K and strain rates of 0.0001 /s to 100 /s. Tri-lab tin showed significant temperature and strain rate dependent strength with no significant plastic anisotropy. A sample to sample material variation was observed from duplicate compression tests and texture measurements. Compression data was used to calibrate model parameters for temperature and rate dependent strength models, Johnson-Cook (JC), Zerilli-Armstrong (ZA) and Preston-Tonks-Wallace (PTW) strength models.

More Details

A Platform-Independent X-ray Diffraction Diagnostic for Phase Transition Kinetics in Traditional and Synthetic Microstructure Materials (LDRD Project 213088 Final Report)

Ao, Tommy A.; Austin, Kevin N.; Breden, E.W.; Brown, Justin L.; Dean, Steven W.; Duwal, Sakun D.; Fan, Hongyou F.; Kalita, Patricia K.; Knudson, Marcus D.; Meng, Lingyao M.; Morgan, Dane D.; Pacheco, Lena M.; Qin, Yang Q.; Stoltzfus, Brian S.; Thurston, Bryce A.; Usher, Joshua M.; Lane, James M.

Pulsed-power generators using the magnetic loading technique are able to produce well-controlled continuous ramp compression of condensed matter for high-pressure equation-of-state studies. X-ray diffraction (XRD) data from dynamically compressed samples provide direct measurements of the elastic compression of the crystal lattice, onset of plastic flow, strength-strain rate dependence, structural phase transitions, and density of crystal defects such as dislocations. Here, we present a cost effective, compact X-ray source for XRD measurements on pulsed-power-driven ramp-loaded samples. This combination of magnetically-driven ramp compression of materials with single, short-pulse XRD diagnostic will be a powerful capability for the dynamic materials community. The success in fielding this new XRD diagnostic dramatically improves our predictive capability and understanding of rate-dependent behavior at or near phase transition. As Sandia plans the next-generation pulse-power driver platform, a key element needed to deliver new state-of-the-art experiments will be having the necessary diagnostic tools to probe new regimes and phenomena. These diagnostics need to be as versatile, compact, and portable as they are powerful. The development of a platform-independent XRD diagnostic gives Sandia researchers a new window to study the microstructure and phase dynamics of materials under load. This project has paved the way for phase transition research in a variety of materials with mission interest.

More Details

Towards Predictive Plasma Science and Engineering through Revolutionary Multi-Scale Algorithms and Models (Final Report)

Laity, George R.; Robinson, Allen C.; Cuneo, M.E.; Alam, Mary K.; Beckwith, Kristian B.; Bennett, Nichelle L.; Bettencourt, Matthew T.; Bond, Stephen D.; Cochrane, Kyle C.; Criscenti, Louise C.; Cyr, Eric C.; De Zetter, Karen J.; Drake, Richard R.; Evstatiev, Evstati G.; Fierro, Andrew S.; Gardiner, Thomas A.; Glines, Forrest W.; Goeke, Ronald S.; Hamlin, Nathaniel D.; Hooper, Russell H.; Koski, Jason K.; Lane, James M.; Larson, Steven R.; Leung, Kevin L.; McGregor, Duncan A.; Miller, Philip R.; Miller, Sean M.; Ossareh, Susan J.; Phillips, Edward G.; Simpson, Sean S.; Sirajuddin, David S.; Smith, Thomas M.; Swan, Matthew S.; Thompson, Aidan P.; Tranchida, Julien G.; Bortz-Johnson, Asa J.; Welch, Dale R.; Russell, Alex M.; Watson, Eric D.; Rose, David V.; McBride, Ryan D.

This report describes the high-level accomplishments from the Plasma Science and Engineering Grand Challenge LDRD at Sandia National Laboratories. The Laboratory has a need to demonstrate predictive capabilities to model plasma phenomena in order to rapidly accelerate engineering development in several mission areas. The purpose of this Grand Challenge LDRD was to advance the fundamental models, methods, and algorithms along with supporting electrode science foundation to enable a revolutionary shift towards predictive plasma engineering design principles. This project integrated the SNL knowledge base in computer science, plasma physics, materials science, applied mathematics, and relevant application engineering to establish new cross-laboratory collaborations on these topics. As an initial exemplar, this project focused efforts on improving multi-scale modeling capabilities that are utilized to predict the electrical power delivery on large-scale pulsed power accelerators. Specifically, this LDRD was structured into three primary research thrusts that, when integrated, enable complex simulations of these devices: (1) the exploration of multi-scale models describing the desorption of contaminants from pulsed power electrodes, (2) the development of improved algorithms and code technologies to treat the multi-physics phenomena required to predict device performance, and (3) the creation of a rigorous verification and validation infrastructure to evaluate the codes and models across a range of challenge problems. These components were integrated into initial demonstrations of the largest simulations of multi-level vacuum power flow completed to-date, executed on the leading HPC computing machines available in the NNSA complex today. These preliminary studies indicate relevant pulsed power engineering design simulations can now be completed in (of order) several days, a significant improvement over pre-LDRD levels of performance.

More Details

Hydrocarbon and Water Desorption from Iron-Oxide Surfaces using Molecular Dynamics

AIP Conference Proceedings

Koski, Jason K.; Lane, James M.

The high-rate desorption of hydrocarbons, water, and hydrocarbon-water mixtures from a hematite (α-Fe2O3) surface was investigated using classical molecular dynamics. We analyze the desorption as a function of hydrocarbon architecture, coverage, chain length, and the composition of hydrocarbon-water mixtures. We find that for the temperature ramp rates tested, that branched naphthene hydrocarbons exhibit similar desorption trends as linear paraffin hydrocarbons. Furthermore, the hydrocarbon desorption is independent of surface coverage on the substrate. However, the desorption temperature decreases significantly as a function of hydrocarbon chain length. We find that in the case of mixtures, water adsorbs to the substrate and hydrocarbons sit atop the water at 300 K. In mixtures, both the hydrocarbon and water desorption change minimally as a function of composition.

More Details

Mechanics of Gold Nanoparticle Superlattices at High Hydrostatic Pressure

Srivastava, Ishan S.; Peters, Brandon L.; Lane, James M.; Fan, Hongyou F.; Grest, Gary S.; Salerno, Michael S.

Pressure-driven assembly of ligand-grafted gold nanoparticle superlattices is a promising approach for fabricating gold nanostructures, such as nanowires and nanosheets. However, optimizing this fabrication method requires an understanding of the mechanics of their complex hierarchical assemblies at high pressures. We use molecular dynamics simulations to characterize the response of alkanethiol-grafted gold nanoparticle superlattices to applied hydrostatic pressures up to 15 GPa, and demonstrate that the internal mechanics significantly depend on ligand length. At low pressures, intrinsic voids govern the mechanics of pressure-induced compaction, and the dynamics of collapse of these voids under pressure depend significantly on ligand length. These microstructural observations correlate well with the observed trends in bulk modulus and elastic constants. For the shortest ligands at high pressures, coating failure leads to gold core-core contact, an augur of irreversible response and eventual sintering. This behavior was unexpected under hydrostatic loading, and was only observed for the shortest ligands.

More Details

Investigating Ta strength across multiple platforms strain rates and pressures

Mattsson, Thomas M.; Flicker, Dawn G.; Benage, John F.; Battaile, Corbett C.; Brown, Justin L.; Lane, James M.; Lim, Hojun L.; Arsenlis, Thomas A.; Barton, Nathan R.; Park, Hye-Sook P.; Swift, Damian C.; Prisbrey, Shon T.; Austin, Ryan A.; McNabb, Dennis P.; Remington, Bruce A.; Prime, Michael B.; Gray, George T.; Bronkhorst, Curt B.; Shen, Shuh-Rong S.; Luscher, D.J.L.; Scharff, Robert J.; Fensin, Sayu J.; Schraad, Mark W.; Dattelbaum, Dana M.; Brown, Staci L.

Abstract not provided.

A cross-platform comparison of dynamic material strength for tantalum

Flicker, Dawn G.; Prime, Michael, L.; Gray, GT, L.; Chen, SR, L.; Schraad, M.S.; Dattelbaum, D.D.; Fensin, S.F.; Preston, D.P.; Butler, W.B.; Sjue, S.S.; Arsenlis, T.A.; Park, H-S P.; McNabb, D.M.; Barton, N.B.; Remington, B.R.; Prisbey, S.P.; Austin, R.A.; Swift, D.S.; Benage, John F.; Lane, James M.; Brown, Justin L.; Lim, Hojun L.; Battaile, Corbett C.; Mattsson, Thomas M.; Sun, Amy C.; Moore, Alexander M.

Abstract not provided.

Improved Mechanical Performance Fracture Properties and Reliability of Radical-Cured Thermosets

Redline, Erica M.; Bolintineanu, Dan S.; Lane, James M.; Stevens, Mark J.; Alam, Todd M.; Celina, Mathias C.

The aim of this study was to alter polymerization chemistry to improve network homogeneity in free-radical crosslinked systems. It was hypothesized that a reduction in heterogeneity of the network would lead to improved mechanical performance. Experiments and simulations were carried out to investigate the connection between polymerization chemistry, network structure and mechanical properties. Experiments were conducted on two different monomer systems - the first is a single monomer system, urethane dimethacrylate (UDMA), and the second is a two-monomer system consisting of bisphenol A glycidyl dimethacrylate (BisGMA) and triethylene glycol dimethacrylate (TEGDMA) in a ratio of 70/30 BisGMA/TEGDMA by weight. The methacrylate systems were crosslinked using traditional radical polymeriza- tion (TRP) with azobisisobutyronitrile (AIBN) or benzoyl peroxide (BPO) as an initiator; TRP systems were used as the control. The monomers were also cross-linked using activator regenerated by electron transfer atom transfer radical polymerization (ARGET ATRP) as a type of controlled radical polymerization (CRP). FTIR and DSC were used to monitor reac- tion kinetics of the systems. The networks were analyzed using NMR, DSC, X-ray diffraction (XRD), atomic force microscopy (AFM), and small angle X-ray scattering (SAXS). These techniques were employed in an attempt to quantify differences between the traditional and controlled radical polymerizations. While a quantitative methodology for characterizing net- work morphology was not established, SAXS and AFM have shown some promising initial results. Additionally, differences in mechanical behavior were observed between traditional and controlled radical polymerized thermosets in the BisGMA/TEGDMA system but not in the UDMA materials; this finding may be the result of network ductility variations between the two materials. Coarse-grained molecular dynamics simulations employing a novel model of the CRP reaction were carried out for the UDMA system, with parameters calibrated based on fully atomistic simulations of the UDMA monomer in the liquid state. Detailed metrics based on network graph theoretical approaches were implemented to quantify the bond network topology resulting from simulations. For a broad range of polymerization parameters, no discernible differences were seen between TRP and CRP UDMA simulations at equal conversions, although clear differences exist as a function of conversion. Both findings are consistent with experiments. Despite a number of shortcomings, these models have demonstrated the potential of molecular simulations for studying network topology in these systems.

More Details
Results 1–50 of 90
Results 1–50 of 90