Detection and capture of toxic nitrogen oxides (NOx) is important for emissions control of exhaust gases and general public health. The ability to directly electrically detect trace (0.5–5 ppm) NO2 by a metal–organic framework (MOF)-74-based sensor at relatively low temperatures (50 °C) is demonstrated via changes in electrical properties of M-MOF-74, M = Co, Mg, Ni. The magnitude of the change is ordered Ni > Co > Mg and explained by each variant's NO2 adsorption capacity and specific chemical interaction. Ni-MOF-74 provides the highest sensitivity to NO2; a 725× decrease in resistance at 5 ppm NO2 and detection limit <0.5 ppm, levels relevant for industry and public health. Furthermore, the Ni-MOF-74-based sensor is selective to NO2 over N2, SO2, and air. Linking this fundamental research with future technologies, the high impedance of MOF-74 enables applications requiring a near-zero power sensor or dosimeter, with the active material drawing <15 pW for a macroscale device 35 mm2 with 0.8 mg MOF-74. This represents a 104–106× decrease in power consumption compared to other MOF sensors and demonstrates the potential for MOFs as active components for long-lived, near-zero power chemical sensors in smart industrial systems and the internet of things.
Iodine detection is crucial for nuclear waste clean-up and first responder activities. For ease of use and durability of response, robust active materials that enable the direct electrical detection of I2 are needed. Herein, a large reversible electrical response is demonstrated as I2 is controllably and repeatedly adsorbed and desorbed from a series of metal-organic frameworks (MOFs) MFM-300(X), each possessing a different metal center (X = Al, Fe, In, or Sc) bridged by biphenyl-3,3′,5,5′-tetracarboxylate linkers. Impedance spectroscopy is used to evaluate how the different metal centers influence the electrical response upon cycling of I2 gas, ranging from 10× to 106× decrease in resistance upon I2 adsorption in air. This large variation in electrical response is attributed not only to the differing structural characteristics of the MOFs but also to the differing MOF morphologies and how this influences the degree of reversibility of I2 adsorption. Interestingly, MFM-300(Al) and MFM-300(In) displayed the largest changes in resistance (up to 106×) yet lost much of their adsorption capacity after five I2 adsorption cycles in air. On the other hand, MFM-300(Fe) and MFM-300(Sc) revealed more moderate changes in resistance (10-100×), maintaining most of their original adsorption capacity after five cycles. This work demonstrates how changes in MOFs can profoundly affect the magnitude and reversibility of the electrical response of sensor materials. Tuning both the intrinsic (resistivity and adsorption capacity) and extrinsic (surface area and particle morphology) properties is necessary to develop highly reversible, large signal-generating MOF materials for direct electrical readout for I2 sensing.
The removal of silica, ubiquitous in produced and industrial waters, by novel mixed oxides is investigated in this present study. We have combined the advantage of high selectivity hydrotalcite (HTC, (Mg6Al2(OH)16(CO3)·4H2O)), with large surface area of active alumina (AA, (Al2O3)) for effective removing of the dissolved silica from cooling tower water. The batch test results indicated the combined HTC/AA is a more effective method for removing silica from CTW than using each of HTC or AA separately. The silica uptake was confirmed by Fourier transform infrared (FTIR), and Energy dispersive spectroscopy (EDS). Results indicate HTC/AA effectively removes silica from cooling tower water (CTW), even in the presence of large concentrations of competing anions, such as Cl−, NO3− HCO3−, CO32− and SO42−. The Single Path Flow Through (SPFT) tests confirmed to rapid uptake of silica by combined HTC/AA during column filtration. The experimental data of silica adsorption fit best to Freundlich isotherm model.
Water shortages are a growing global problem. Reclamation of industrial and municipal wastewater will be necessary in order to mitigate water scarcity. However, many operational challenges, such as silica scaling, prevent large scale water reuse. Previously, our team at Sandia has demonstrated the use of selective ion exchange materials, such as calcinated hydrotalcite (HTC, (Mg 6 Al 2 (OH) 16 (CO 3 )*4H 2 O)), for the low cost removal of silica from synthetic cooling tower water. However, it is not currently know if calcinated HTC has similar capabilities in realistic applications. The purpose of this study was to investigate the ability of calcinated HTC to remove silica from real cooling tower water. This was investigated under both batch and continuous conditions, and in the presence of competing ions. It was determined that calcinated HTC behaved similarly in real and synthetic cooling tower water; the HTC is highly selective for the silica even in the presence of competing cations. Therefore, the data concludes that calcinated HTC is a viable anti-scaling pretreatment for the reuse of industrial wastewaters.
Fresh water scarcity is going to be a global great challenge in the near future because of the increasing population. Our water resources are limited and, hence, water treatment and recycling methods are the only alternatives for fresh water procurement in the upcoming decades. Water treatment and recycling methods serve to remove harmful or problematic constituents from ground, surface and waste waters prior to its consumption, industrial supply, or other uses. Scale formation in industrial and domestic installations is still an important problem during water treatment. In water treatment, silica scaling is a real and constant concern for plant operations. The focus of this study is on the viability of using a combination of catechol and active carbon to remove dissolved silica from concentrated cooling tower water (CCTW). Various analytical methods, such as ICP-MS and UV-vis, were used to understand the structure-property relationship between the material and the silica removal results. UV-Vis indicates that catechol can react with silica ions and form a silica-catecholate complex. The speciation calculation of catechol and silica shows that catechol and silica bind in the pH range of 8 – 10; there is no evidence of linkage between them in neutral and acidic pHs. The silica removal results indicate that using ~4g/L of catechol and 10g/L active carbon removes up to 50% of the dissolved silica from the CCTW.
The study of mineral-water interfaces is of great importance to a variety of applications including oil and gas extraction, gas subsurface storage, environmental contaminant treatment, and nuclear waste repositories. Understanding the fundamentals of that interface is key to the success of those applications. Confinement of water in the interlayer of smectite clay minerals provides a unique environment to examine the interactions among water molecules, interlayer cations, and clay mineral surfaces. Smectite minerals are characterized by a relatively low layer charge that allows the clay to swell with increasing water content. Montmorillonite and beidellite varieties of smectite were investigated to compare the impact of the location of layer charge on the interlayer structure and dynamics. Inelastic neutron scattering of hydrated and dehydrated cation-exchanged smectites was used to probe the dynamics of the interlayer water (200-900 cm-1 spectral region) and identify the shift in the librational edge as a function of the interlayer cation. Molecular dynamics simulations of equivalent phases and power spectra, derived from the resulting molecular trajectories, indicate a general shift in the librational behavior with interlayer cation that is generally consistent with the neutron scattering results for the monolayer hydrates. Both neutron scattering and power spectra exhibit librational structures affected by the location of layer charge and by the charge of the interlayer cation. Divalent cations (Ba2+ and Mg2+) characterized by large hydration enthalpies typically exhibit multiple broad librational peaks compared to monovalent cations (Cs+ and Na+), which have relatively small hydration enthalpies.
The National Water, Energy and Carbon Sequestration simulation model (WECSsim) is being developed to address the question, 'Where in the current and future U.S. fossil fuel based electricity generation fleet are there opportunities to couple CO{sub 2} storage and extracted water use, and what are the economic and water demand-related impacts of these systems compared to traditional power systems?' The WECSsim collaborative team initially applied this framework to a test case region in the San Juan Basin, New Mexico. Recently, the model has been expanded to incorporate the lower 48 states of the U.S. Significant effort has been spent characterizing locations throughout the U.S. where CO{sub 2} might be stored in saline formations including substantial data collection and analysis efforts to supplement the incomplete brine data offered in the NatCarb database. WECSsim calculates costs associated with CO{sub 2} capture and storage (CCS) for the power plant to saline formation combinations including parasitic energy costs of CO{sub 2} capture, CO{sub 2} pipelines, water treatment options, and the net benefit of water treatment for power plant cooling. Currently, the model can identify the least-cost deep saline formation CO{sub 2} storage option for any current or proposed coal or natural gas-fired power plant in the lower 48 states. Initial results suggest that additional, cumulative water withdrawals resulting from national scale CCS may range from 676 million gallons per day (MGD) to 30,155 MGD depending on the makeup power and cooling technologies being utilized. These demands represent 0.20% to 8.7% of the U.S. total fresh water withdrawals in the year 2000, respectively. These regional and ultimately nation-wide, bottom-up scenarios coupling power plants and saline formations throughout the U.S. can be used to support state or national energy development plans and strategies.
Radioactive iodine, 129I, a component of spent nuclear fuel, is of particular concern due to its extremely long half-life, its potential mobility in the environment and its effects on human health. In the spent fuel reprocessing scheme under consideration, the 129I is released in gaseous form and collected using Ag-loaded zeolites such as Ag-mordenite. The 129I can react with the Ag to form insoluble AgI. We have investigated the use of low temperature-sintering glass powders mixed with either AgI or AgI-zeolite to produce dense waste forms that can be processed at 500°C, where AgI volatility is low. These mixtures can contain up to 20 wt% crushed AgI-mordenite or up to 50 wt% AgI. Both types of waste forms were found to have the high iodine leach resistance in these initial studies.
Concerns over rising concentrations of greenhouse gases in the atmosphere have resulted in serious consideration of policies aimed at reduction of anthropogenic carbon dioxide (CO2) emissions. If large scale abatement efforts are undertaken, one critical tool will be geologic sequestration of CO2 captured from large point sources, specifically coal and natural gas fired power plants. Current CO2 capture technologies exact a substantial energy penalty on the source power plant, which must be offset with make-up power. Water demands increase at the source plant due to added cooling loads. In addition, new water demand is created by water requirements associated with generation of the make-up power. At the sequestration site however, saline water may be extracted to manage CO2 plum migration and pressure build up in the geologic formation. Thus, while CO2 capture creates new water demands, CO2 sequestration has the potential to create new supplies. Some or all of the added demand may be offset by treatment and use of the saline waters extracted from geologic formations during CO2 sequestration. Sandia National Laboratories, with guidance and support from the National Energy Technology Laboratory, is creating a model to evaluate the potential for a combined approach to saline formations, as a sink for CO2 and a source for saline waters that can be treated and beneficially reused to serve power plant water demands. This presentation will focus on the magnitude of added U.S. power plant water demand under different CO2 emissions reduction scenarios, and the portion of added demand that might be offset by saline waters extracted during the CO2 sequestration process.
In an effort to address the potential to scale up of carbon dioxide (CO{sub 2}) capture and sequestration in the United States saline formations, an assessment model is being developed using a national database and modeling tool. This tool builds upon the existing NatCarb database as well as supplemental geological information to address scale up potential for carbon dioxide storage within these formations. The focus of the assessment model is to specifically address the question, 'Where are opportunities to couple CO{sub 2} storage and extracted water use for existing and expanding power plants, and what are the economic impacts of these systems relative to traditional power systems?' Initial findings indicate that approximately less than 20% of all the existing complete saline formation well data points meet the working criteria for combined CO{sub 2} storage and extracted water treatment systems. The initial results of the analysis indicate that less than 20% of all the existing complete saline formation well data may meet the working depth, salinity and formation intersecting criteria. These results were taken from examining updated NatCarb data. This finding, while just an initial result, suggests that the combined use of saline formations for CO{sub 2} storage and extracted water use may be limited by the selection criteria chosen. A second preliminary finding of the analysis suggests that some of the necessary data required for this analysis is not present in all of the NatCarb records. This type of analysis represents the beginning of the larger, in depth study for all existing coal and natural gas power plants and saline formations in the U.S. for the purpose of potential CO{sub 2} storage and water reuse for supplemental cooling. Additionally, this allows for potential policy insight when understanding the difficult nature of combined potential institutional (regulatory) and physical (engineered geological sequestration and extracted water system) constraints across the United States. Finally, a representative scenario for a 1,800 MW subcritical coal fired power plant (amongst other types including supercritical coal, integrated gasification combined cycle, natural gas turbine and natural gas combined cycle) can look to existing and new carbon capture, transportation, compression and sequestration technologies along with a suite of extracting and treating technologies for water to assess the system's overall physical and economic viability. Thus, this particular plant, with 90% capture, will reduce the net emissions of CO{sub 2} (original less the amount of energy and hence CO{sub 2} emissions required to power the carbon capture water treatment systems) less than 90%, and its water demands will increase by approximately 50%. These systems may increase the plant's LCOE by approximately 50% or more. This representative example suggests that scaling up these CO{sub 2} capture and sequestration technologies to many plants throughout the country could increase the water demands substantially at the regional, and possibly national level. These scenarios for all power plants and saline formations throughout U.S. can incorporate new information as it becomes available for potential new plant build out planning.
Reprocessing nuclear fuel releases gaseous radio-iodine containing compounds which must be captured and stored for prolonged periods. Ag-loaded mordenites are the leading candidate for scavenging both organic and inorganic radioiodine containing compounds directly from reprocessing off gases. Alternately, the principal off-gas contaminant, I2, and I-containing acids HI, HIO3, etc. may be scavenged using caustic soda solutions, which are then treated with bismuth to put the iodine into an insoluble form. Our program is focused on using state-of-the-art materials science technologies to develop materials with high loadings of iodine, plus high long-term mechanical and thermal stability. In particular, we present results from research into two materials areas: (1) zeolite-based separations and glass encapsulation, and (2) in-situ precipitation of Bi-I-O waste forms. Ag-loaded mordenite is either commercially available or can be prepared via a simple Ag+ ion exchange process. Research using an Ag+-loaded Mordenite zeolite (MOR, LZM-5 supplied by UOP Corp.) has revealed that I2 is scavenged in one of three forms, as micron-sized AgI particles, as molecular (AgI)x clusters in the zeolite pores and as elemental I2 vapor. It was found that only a portion of the sorbed iodine is retained after heating at 95o C for three months. Furthermore, we show that even when the Ag-MOR is saturated with I2 vapor only roughly half of the silver reacted to form stable AgI compounds. However, the Iodine can be further retained if the AgI-MOR is then encapsulated into a low temperature glass binder. Follow-on studies are now focused on the sorption and waste form development of Iodine from more complex streams including organo-iodine compounds (CH3I). Bismuth-Iodate layered phases have been prepared from caustic waste stream simulant solutions. They serve as a low cost alternative to ceramics waste forms. Novel compounds have been synthesized and solubility studies have been completed using competing groundwater anions (HCO3-, Cl- and SO42-). Distinct variations in solubility were found that related to the structures of the materials.
Expansion of uranium mining in the United States is a concern to some environmental groups and sovereign Native American Nations. An approach which may alleviate some problems is to develop inherently safe in situ uranium recovery ('ISR') technologies. Current ISR technology relies on chemical extraction of trace levels of uranium from aquifers that, once mined, can still contain dissolved uranium and other trace metals that are a health concern. Existing ISR operations are few in number; however, high uranium prices are driving the industry to consider expanding operations nation-wide. Environmental concerns and enforcement of the new 30 ppb uranium drinking water standard may make opening new mining operations more difficult and costly. Here we propose a technological fix: the development of inherently safe in situ recovery (ISISR) methods. The four central features of an ISISR approach are: (1) New 'green' leachants that break down predictably in the subsurface, leaving uranium, and associated trace metals, in an immobile form; (2) Post-leachant uranium/metals-immobilizing washes that provide a backup decontamination process; (3) An optimized well-field design that increases uranium recovery efficiency and minimizes excursions of contaminated water; and (4) A combined hydrologic/geochemical protocol for designing low-cost post-extraction long-term monitoring. ISISR would bring larger amounts of uranium to the surface, leave fewer toxic metals in the aquifer, and cost less to monitor safely - thus providing a 'win-win-win' solution to all stakeholders.
This new program at Sandia is focused on Iodine waste form development for GNEP cycle needs. Our research has a general theme of 'Waste Forms by Design' in which we are focused on silver loaded zeolite waste forms and related metal loaded zeolites that can be validated for chosen GNEP cycle designs. With that theme, we are interested in materials flexibility for iodine feed stream and sequestration material (in a sense, the ability to develop a universal material independent on the waste stream composition). We also are designing the flexibility to work in a variety of repository or storage scenarios. This is possible by studying the structure/property relationship of existing waste forms and optimizing them to our current needs. Furthermore, by understanding the properties of the waste and the storage forms we may be able to predict their long-term behavior and stability. Finally, we are working collaboratively with the Waste Form Development Campaign to ensure materials durability and stability testing.
With the lowering of the EPA maximum contaminant level of arsenic from 50 parts per billion (ppb) to 10 ppb, many public water systems in the country and in New Mexico in particular, are faced with making decisions about how to bring their system into compliance. This document provides detail on the options available to the water systems and the steps they need to take to achieve compliance with this regulation. Additionally, this document provides extensive resources and reference information for additional outreach support, financing options, vendors for treatment systems, and media pilot project results.
This document defines a standardized screening protocol for use in developing iodine ''getters'' for placement in the proposed YMP-repository invert. The work was funded by the US Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM), Office of Science and Technology International (S&T) during 2004-2005. First, the likely environmental conditions in the invert are reviewed as a basis for defining the thermal and geochemical regimes in which a getter must function. These considerations, then, served as the basis for laying out a hierarchy of materials screening tests (Table 1). An experimental design for carrying out these screening tests follows next. Finally, the latter half of the document develops methods for preparing test solutions with chemistries that relate to various aspects of the YMP-repository environment (or, at least to such representations as were available from program documents late in 2004). Throughout the document priority was given to defining procedures that would quickly screen out unpromising candidate materials with a minimum amount of labor. Hence, the proposed protocol relies on batch tests over relatively short times, and on a hierarchy of short pre-test conditioning steps. So as not to repeat the mistakes (and frustrations) encountered in the past (notably in preparing WIPP test brines) particular care was also given to developing standardized test solution recipes that could be prepared easily and reproducibly. This document is principally intended for use as a decision-making tool in evaluating and planning research activities. It is explicitly NOT a roadmap for qualifying getters for actual placement in the repository. That would require a comprehensive test plan and a substantial consensus building effort. This document is also not intended to provide a complete list of all the tests that individuals may wish to carry out. Various materials will have their own peculiar concerns that will call for additional specialized tests. In many cases additional research will also be needed to verify the exact nature of the chemical process responsible for scavenging the iodine from the test solutions.
This report documents a field trial program carried out at Well No.15 located at Kirtland Air Force Base, Albuquerque, New Mexico, to evaluate the performance of two relatively new arsenic removal media, ALCAN-AASF50 (ferric coated activated alumina) and granular ferric hydroxide (US Filter-GFH). The field trial program showed that both media were able to remove arsenate and meet the new total arsenic maximum contaminant level (MCL) in drinking water of 10 {micro}g/L. The arsenate removal capacity was defined at a breakthrough effluent concentration of 5 {micro}g/L arsenic (50% of the arsenic MCL of 10 {micro}g/L). At an influent pH of 8.1 {+-} 0.4, the arsenate removal capacity of AASF50 was 33.5 mg As(V)/L of dry media (29.9 {micro}g As(V)/g of media on a dry basis). At an influent pH of 7.2 {+-} 0.3, the arsenate removal capacity of GFH was 155 mg As(V)/L of wet media (286 {micro}g As(V)/g of media on a dry basis). Silicate, fluoride, and bicarbonate ions are removed by ALCAN AASF50. Chloride, nitrate, and sulfate ions were not removed by AASF50. The GFH media also removed silicate and bicarbonate ions; however, it did not remove fluoride, chloride, nitrate, and sulfate ions. Differences in the media performance partly reflect the variations in the feed-water pH between the 2 tests. Both the exhausted AASF50 and GFH media passed the Toxicity Characteristic Leaching Procedure (TCLP) test with respect to arsenic and therefore could be disposed as nonhazardous waste.
Techniques for mitigating the adsorption of {sup 137}Cs and {sup 60}Co on metal surfaces (e.g. RAM packages) exposed to contaminated water (e.g. spent-fuel pools) have been developed and experimentally verified. The techniques are also effective in removing some of the {sup 60}Co and {sup 137}Cs that may have been adsorbed on the surfaces after removal from the contaminated water. The principle for the {sup 137}Cs mitigation technique is based upon ion-exchange processes. In contrast, {sup 60}Co contamination primarily resides in minute particles of crud that become lodged on cask surfaces. Crud is an insoluble Fe-Ni-Cr oxide that forms colloidal-sized particles as reactor cooling systems corrode. Because of the similarity between Ni{sup 2+} and Co{sup 2+}, crud is able to scavenge and retain traces of cobalt as it forms. A number of organic compounds have a great specificity for combining with nickel and cobalt. Ongoing research is investigating the effectiveness of chemical complexing agent EDTA with regard to its ability to dissolve the host phase (crud) thereby liberating the entrained {sup 60}Co into a solution where it can be rinsed away.
An environmentally friendly method and materials study for desalinating inland brackish waters (i.e., coal bed methane produced waters) using a set of ion-exchange materials is presented. This desalination process effectively removes anions and cations in separate steps with minimal caustic waste generation. The anion-exchange material, hydrotalcite (HTC), exhibits an ion-exchange capacity (IEC) of {approx} 3 mequiv g{sup -1}. The cation-exchange material, an amorphous aluminosilicate permutite-like material, (Na{sub x+2y}Al{sub x}Si{sub 1-x}O{sub 2+y}), has an IEC of {approx}2.5 mequiv g{sup -1}. These ion-exchange materials were studied and optimized because of their specific ion-exchange capacity for the ions of interest and their ability to function in the temperature and pH regions necessary for cost and energy effectiveness. Room temperature, minimum pressure column studies (once-pass through) on simulant brackish water (total dissolved solids (TDS) = 2222 ppm) resulted in water containing TDS = 25 ppm. A second once-pass through column study on actual produced water (TDS = {approx}11,000) with a high carbonate concentration used an additional lime softening step and resulted in a decreased TDS of 600 ppm.
Techniques for mitigating the adsorption of {sup 137}Cs and {sup 60}Co on metal surfaces (e.g. RAM packages) exposed to contaminated water (e.g. spent-fuel pools) have been developed and experimentally verified. The techniques are also effective in removing some of the {sup 60}Co and {sup 137}Cs that may have been adsorbed on the surfaces after removal from the contaminated water. The principle for the {sup 137}Cs mitigation technique is based upon ion-exchange processes. In contrast, {sup 60}Co contamination primarily resides in minute particles of crud that become lodged on cask surfaces. Crud is an insoluble Fe-Ni-Cr oxide that forms colloidal-sized particles as reactor cooling systems corrode. Because of the similarity between Ni{sup 2+} and Co{sup 2+}, crud is able to scavenge and retain traces of cobalt as it forms. A number of organic compounds have a great specificity for combining with nickel and cobalt. Ongoing research is investigating the effectiveness of chemical complexing agent EDTA with regard to its ability to dissolve the host phase (crud) thereby liberating the entrained {sup 60}Co into a solution where it can be rinsed away.
The need for fresh water has increased exponentially during the last several decades due to the continuous growth of human population and industrial and agricultural activities. Yet existing resources are limited often because of their high salinity. This unfavorable situation requires the development of new, long-term strategies and alternative technologies for desalination of saline waters presently not being used to supply the population growth occurring in arid regions. We have developed a novel environmentally friendly method for desalinating inland brackish waters. This process can be applied to either brackish ground water or produced waters (i.e., coal-bed methane or oil and gas produced waters). Using a set of ion exchange and sorption materials, our process effectively removes anions and cations in separate steps. The ion exchange materials were chosen because of their specific selectivity for ions of interest, and for their ability to work in the temperature and pH regions necessary for cost and energy effectiveness. For anion exchange, we have focused on hydrotalcite (HTC), a layered hydroxide similar to clay in structure. For cation exchange, we have developed an amorphous silica material that has enhanced cation (in particular Na{sup +}) selectivity. In the case of produced waters with high concentrations of Ca{sup 2+}, a lime softening step is included.
The long-range objective of this study was to develop chemically assisted technologies for removing heels from tanks. In FY 01, the first two steps toward this objective were taken: (1) catalogue the occurrence and nature of tank heels and assess which materials are available for study and (2) develop methods for synthesizing non-radioactive surrogate heel materials for use in testing potential removal technologies. The chief finding of Task 1 was the existence of ''heels'', depending on the definition used. Hard materials that would be almost impossible to remove by sluicing are all but absent from the records of both Savannah River and Hanford. Historical usage suggests that the term ''heel'' may also apply to chunky, granular, or semi-solid pasty accumulations. These materials are documented and may also be difficult to remove by conventional sluicing technologies. Such heels may be comprised of normal sludge components, dominantly iron and aluminum hydroxides, or they may result from added materials which were not part of the normal fuel reprocessing operations: Portland cement, diatomaceous earth, sand and soil and spent zeolite ion exchange ''resins''. The occurrence and chemistry of the most notable ''heel'', that of the zeolite mass in Tank 19F at Savannah River, is reviewed in some detail. Secondly, no clear correlation was found between high tank temperatures and difficulties encountered in removing materials from a tank at a later date; nor did the sludges from these tanks give any indication of being particularly solid. Experimental studies to develop synthetic heel materials were caned out using a number of different approaches. For normal sludge materials settling, even when assisted by a centrifuge, it proved ineffective. The same result was obtained from drying sludge samples. Even exposing sludges to a molten salt melt at 233 C, only produced a fine powder, rather than a resilient ceramic which resisted disaggregation. A cohesive material, however, was produced by wicking the pore fluid out of a sludge gel (into packed diatomaceous earth), while simultaneously applying pressure to compact the sludge as it dehydrated. Osmotic gradients could provide the same function as the capillary forces provided by the diatomaceous earth sorbant placed in contact with the sludge. Tests on the anomalous materials added to the tanks all indicated potential problems. Hard granules, and maybe chunks, may be encountered where Portland cement was added to a tank. Sand, spent zeolite resin, and diatomaceous earth, will all react with the tank fluids to produce a sodalite/cancrinite material. The degree of reaction determines whether the grains become cemented together. SRS activities showed that heels formed when spent zeolites were added to tanks can be readily dislodged and it is expected that heels from sand would possess equal or less cohesion. Diatomaceous earth may form more resilient crusts or masses. To summarize, the existence of ''hard'' heels has yet to be documented. A broader definition suggests inclusion of poorly cohesive cancrinite-cemented masses and dense past-like accumulations of abnormally compacted ''normal'' sludges. Chemical treatments to remove these materials must focus on agents that are active against aluminosilicates and hydrous oxides of iron and aluminum. Exploiting the high pore-water content of these materials may provide a second avenue for dislodging such accumulations. Techniques were developed to produce synthetic sludges on which various removal technologies could be tried.
Contaminant release scenarios proposed for the Waste Isolation Pilot Plant (WIPP) repository suggest that the Culebra Dolomite member of the Rustler Formation could be an important radionuclide release path. This thin, vuggy, highly fractured unit is the most transmissive geologic unit overlying the WIPP. Many of the samples obtained from drill cores in the Culebra exhibit fractures that are lined with iron-oxyhydroxide-rich and clay-rich mineral coatings. The coatings are mineralogically distinct from the rock matrix, and may have sorptive characteristics that are different from a clay-poor dolomite matrix. Where locally abundant, such coatings could affect advective/diffusive exchange between matrix blocks and fractures and the accessible mineral surface area available for radionuclide adsorption. Clay minerals are present in the matrix and as fracture coatings in the samples from all the drill core locations examined in this study. Visual examination of rock sample surfaces in the H -19b7 core suggests that at least 7% of the total fracture surface area is coated with iron oxhydroxides or clays. In the samples from H-19b7, the amount of clay disseminated in the matrix varies from <1% to {approx}12 % by weight, and generally increases with stratigraphic height within the unit. In a suite of samples obtained from 12 other locations in the vicinity of the WIPP site, matrix samples from the Culebra contain 0.6--7% clay. These samples were taken from the more transmissive lower two-thirds of the unit (Culebra Units 2-4) which was considered to be the accessible portion of the unit in the WIPP Compliance Certification Application (CCA). Clay minerals also occur as clay-rich laminae and partings with the geometries of primary sedimentary structures and dissolution residues. Such partings are the loci of bedding plane fractures, and have the heaviest clay coatings found in the unit. Crosscutting fractures also commonly exhibit clay mineral coatings, but these are generally discontinuous and much thinner.
Backfills have been part of Sandia National Laboratories' [Sandia's] Waste Isolation Pilot Plant [WIPP] designs for over twenty years. Historically, backfill research at Sandia has depended heavily on the changing mission of the WIPP facility. Early testing considered heat producing, high level, wastes. Bentonite/sand/salt mixtures were evaluated and studies focused on developing materials that would retard brine ingress, sorb radionuclides, and withstand elevated temperatures. The present-day backfill consists of pure MgO [magnesium oxide] in a pelletized form and is directed at treating the relatively low contamination level, non-heat producing, wastes actually being disposed of in the WIPP. Its introduction was motivated by the need to scavenging CO{sub 2} [carbon dioxide] from decaying organic components in the waste. However, other benefits, such as a substantial desiccating capacity, are also being evaluated. The MgO backfill also fulfills a statutory requirement for assurance measures beyond those needed to demonstrate compliance with the US Environmental Protection Agency [EPA] regulatory release limits. However, even without a backfill, the WIPP repository design still operates within EPA regulatory release limits.
Decommissioning high level nuclear waste tanks will leave small amounts of residual sludge clinging to the walls and floor of the structures. The permissible amount of material left in the tanks depends on the radionuclide release characteristics of the sludge. At present, no systematic process exists for assessing how much of the remaining inventory will migrate, and which radioisotopes will remain relatively fixed. Working with actual sludges is both dangerous and prohibitively expensive. Consequently, methods were developed for preparing sludge simulants and doping them with nonradioactive surrogates for several radionuclides and RCRA metals of concern in actual sludges. The phase chemistry of these mixes was found to be a reasonable match for the main phases in actual sludges. Preliminary surrogate release characteristics for these sludges were assessed by lowering the ionic strength and pH of the sludges in the manner that would occur if normal groundwater gained access to a decommissioned tank. Most of the Se, Cs and Tc in the sludges will be released into the first pulse of groundwater passing through the sludge. A significant fraction of the other surrogates will be retained indefinitely by the sludges. This prolonged sequestration results from a combination coprecipitated and sorbed into or onto relatively insoluble phases such as apatite, hydrous oxides of Fe, Al, Bi and rare earth oxides and phosphates. The coprecipitated fraction cannot be released until the host phase dissolves or recrystallizes. The sorbed fraction can be released by ion exchange processes as the pore fluid chemistry changes. However, these releases can be predicted based on a knowledge of the fluid composition and the surface chemistry of the solids. In this regard, the behavior of the hydrous iron oxide component of most sludges will probably play a dominant role for many cationic radionuclides while the hydrous aluminum oxides may be more important in governing anion releases.
Conventional performance assessments assume that radioactive {sup 99}Tc travels as a non-sorbing component with an effective K{sub d} (distribution coefficient) of 0. This is because soil mineral surfaces commonly develop net negative surface charges and pertechnetate (TcO{sub 4}), with large ionic size and low electrical density, is not sorbed onto them. However, a variety of materials have been identified that retain Tc and may eventually lead to promising Tc getters. In assessing Tc getter performance it is important to evaluate the environment in which the getter is to function. In many contaminant plumes Tc will only leach slowly from the source of the contamination and significant dilution is likely. Thus, sub-ppb Tc concentrations are expected and normal groundwater constituents will dominate the aquifer chemistry. In this setting a variety of constituents were found to retard TcO{sub 4}: imogolite, boehmite, hydrotalcite, goethite, copper sulfide and oxide and coal. Near leaking tanks of high level nuclear waste, Tc may be present in mg/L level concentrations and groundwater chemistry will be dominated by constituents from the waste. Both bone char, and to a lesser degree, freshly precipitated Al hydroxides may be effective Tc scavengers in this environment. Thus, the search for Tc getters is far from hopeless, although much remains to be learned about the mechanisms by which these materials retain Tc.
A number of Hanford tanks have leaked high level radioactive wastes (HLW) into the surrounding unconsolidated sediments. The disequilibrium between atmospheric C0{sub 2} or silica-rich soils and the highly caustic (pH > 13) fluids is a driving force for numerous reactions. Hazardous dissolved components such as {sup 133}Cs, {sup 79}Se, {sup 99}Tc may be adsorbed or sequestered by alteration phases, or released in the vadose zone for further transport by surface water. Additionally, it is likely that precipitation and alteration reactions will change the soil permeability and consequently the fluid flow path in the sediments. In order to ascertain the location and mobility/immobility of the radionuclides from leaked solutions within the vadose zone, the authors are currently studying the chemical reactions between: (1) tank simulant solutions and Hanford soil fill minerals; and (2) tank simulant solutions and C0{sub 2}. The authors are investigating soil-solution reactions at: (1) elevated temperatures (60--200 C) to simulate reactions which occur immediately adjacent a radiogenically heated tank; and (2) ambient temperature (25 C) to simulate reactions which take place further from the tanks. The authors studies show that reactions at elevated temperature result in dissolution of silicate minerals and precipitation of zeolitic phases. At 25 C, silicate dissolution is not significant except where smectite clays are involved. However, at this temperature CO{sub 2} uptake by the solution results in precipitation of Al(OH){sub 3} (bayerite). In these studies, radionuclide analogues (Cs, Se and Re--for Tc) were partially removed from the test solutions both during high-temperature fluid-soil interactions and during room temperature bayerite precipitation. Altered soils would permanently retain a fraction of the Cs but essentially all of the Se and Re would be released once the plume was past and normal groundwater came in contact with the contaminated soil. Bayerite, however, will retain significant amounts of all three radionuclides.
{sup 137}Cs was dispersed globally by cold war activities and, more recently, by the Chernobyl accident. Engineered extraction of {sup 137}Cs from soils and groundwaters is exceedingly difficult. Because the half life of {sup 137}Cs is only 30.2 years, remediation might be more effective (and less costly) if {sup 137}Cs bioavailability could be demonstrably limited for even a few decades by use of a reactive barrier. Essentially permanent isolation must be demonstrated in those few settings where high nuclear level wastes contaminated the environment with {sup 135}Cs (half life 2.3x10{sup 6} years) in addition to {sup 137}Cs. Clays are potentially a low-cost barrier to Cs movement, though their long-term effectiveness remains untested. To identify optimal clays for Cs retention Cs resorption was measured for five common clays: Wyoming Montmorillonite (SWy-1), Georgia Kaolinites (KGa-1 and KGa-2), Fithian Illite (F-Ill), and K-Metabentonite (K-Mbt). Exchange sites were pre-saturated with 0.16 M CsCl for 14 days and readily exchangeable Cs was removed by a series of LiNO{sub 3} and LiCl washes. Washed clay were then placed into dialysis bags and the Cs release to the deionized water outside the bags measured. Release rates from 75 to 139 days for SWy-1, K-Mbt and F- 111 were similar; 0.017 to 0.021% sorbed Cs released per day. Both kaolinites released Cs more rapidly (0.12 to 0.05% of the sorbed Cs per day). In a second set of experiments, clays were doped for 110 days and subjected to an extreme and prolonged rinsing process. All the clays exhibited some capacity for irreversible Cs uptake so most soils have some limited ability to act as a natural barrier to Cs migration. However, the residual loading was greatest on K-Mbt ({approximately} 0.33 wt% Cs). Thus, this clay would be the optimal material for constructing artificial reactive barriers.