Advances in Testing and Evaluation at Sandia's FACT Site
Abstract not provided.
Abstract not provided.
Abstract not provided.
During the initial phase of this SubTER project, we conducted a series of high resolution seis- mic imaging campaigns designed to characterize induced fractures. Fractures were emplaced using a novel explosive source, designed at Sandia National Laboratories, that limits damage to the borehole. This work provided evidence that fracture locations could be imaged at inch scales using high-frequency seismic tomography but left many fracture properties (i.e. per- meability) unresolved. We present here the results of the second phase of the project, where we developed and demonstrated emerging seismic and electrical geophysical imaging tech- nologies that characterize 1) the 3D extent and distribution of fractures stimulated from the explosive source, 2) 3D fluid transport within the stimulated fracture network through use of a contrasting tracer, and 3) fracture attributes through advanced data analysis. Focus was placed upon advancing these technologies toward near real-time acquisition and processing in order to help provide the feedback mechanism necessary to understand and control frac- ture stimulation and fluid flow. Results from this study include a comprehensive set of 4D crosshole seismic and electrical data that take advantage of change detection methodologies allowing for perturbations associated with the fracture emplacement and particulate tracer to be isolated. During the testing the team also demonstrated near real-time 4D electri- cal resistivity tomography imaging and 4D seismic tomography using the CASSM approach with a temporal resolution approaching 1 minute. All of the data collected were used to develop methods of estimating fracture attributes from seismic data, develop methods of as- similating disparate and transient data sets to improve fracture network imaging resolution, and advance capabilities for near real-time inversion of cross-hole tomographic data. These results are illustrated here. Advancements in these areas are relevant to all situations where fracture emplacement is used for reservoir stimulation (e.g. Enhanced Geothermal Systems (EGS) and tight shale gases).
Abstract not provided.
Transactions - Geothermal Resources Council
During the initial phase of this Department of Energy (DOE) Geothermal Technologies Office (GTO) SubTER project, we conducted a series of high-energy stimulations in shallow wells, the effects of which were evaluated with high resolution seismic imaging campaigns designed to characterize induced fractures. The high-energy stimulations use a novel explosive source that limits damage to the borehole, which was paramount for change detection seismic imaging and re-fracturing experiments. This work provided evidence that the high-energy stimulations were generating self-propping fractures and that these fracture locations could be imaged at inch scales using high-frequency seismic tomography. While the seismic testing certainly provided valuable feedback on fracture generation for the suite of explosives, it left many fracture properties (i.e. permeability) unresolved. We present here the methodology for the second phase of the project, where we are developing and demonstrating emerging seismic and electrical geophysical imaging technologies that have been designed to characterize 1) the 3D extent and distribution of fractures stimulated from the explosive source, 2) 3D fluid transport within the stimulated fracture network through use of a contrasting tracer, and 3) fracture attributes through advanced data analysis. Focus is being placed upon advancing these technologies toward near real-time acquisition and processing in order to help provide the feedback mechanism necessary to understand and control fracture stimulation and fluid flow.
50th US Rock Mechanics / Geomechanics Symposium 2016
During the initial phase of this SubTER project, we conducted a series of high resolution seismic imaging campaigns designed to characterize induced fractures. Fractures were emplaced using a novel explosive source that limits damage to the borehole. This work provided evidence that fracture locations could be imaged at inch scales using high-frequency seismic tomography but left many fracture properties (i.e. permeability) unresolved. We present here the methodology for the second phase of the project, where we will develop and demonstrate emerging seismic and electrical geophysical imaging technologies that characterize 1) the 3D extent and distribution of fractures stimulated from the explosive source, 2) 3D fluid transport within the stimulated fracture network through use of a contrasting tracer, and 3) fracture attributes through advanced data analysis. Focus will be placed upon advancing these technologies toward near real-time acquisition and processing in order to help provide the feedback mechanism necessary to understand and control fracture stimulation and fluid flow.
Abstract not provided.