Publications

22 Results
Skip to search filters

Measurement and modeling of energetic material mass transfer to soil pore water :project CP-1227 FY03 annual technical report

Phelan, James M.; Phelan, James M.; Barnett, James B.; Kerr, Dayle R.

Military test and training ranges operate with live fire engagements to provide realism important to the maintenance of key tactical skills. Ordnance detonations during these operations typically produce minute residues of parent explosive chemical compounds. Occasional low order detonations also disperse solid phase energetic material onto the surface soil. These detonation remnants are implicated in chemical contamination impacts to groundwater on a limited set of ranges where environmental characterization projects have occurred. Key questions arise regarding how these residues and the environmental conditions (e.g., weather and geostratigraphy) contribute to groundwater pollution impacts. This report documents interim results of experimental work evaluating mass transfer processes from solid phase energetics to soil pore water. The experimental work is used as a basis to formulate a mass transfer numerical model, which has been incorporated into the porous media simulation code T2TNT. This report documents the results of the Phase III experimental effort, which evaluated the impacts of surface deposits versus buried deposits, energetic material particle size, and low order detonation debris. Next year, the energetic material mass transfer model will be refined and a 2-d screening model will be developed for initial site-specific applications. A technology development roadmap was created to show how specific R&D efforts are linked to technology and products for key customers.

More Details

GICHD mine dog testing project : soil sample results #5

Blankenship, Brent A.; Phelan, James M.; Barnett, James B.; Bender, Susan F.; Donovan, Kelly L.

A mine dog evaluation project initiated by the Geneva International Center for Humanitarian Demining is evaluating the capability and reliability of mine detection dogs. The performance of field-operational mine detection dogs will be measured in test minefields in Afghanistan containing actual, but unfused landmines. Repeated performance testing over two years through various seasonal weather conditions will provide data simulating near real world conditions. Soil samples will be obtained adjacent to the buried targets repeatedly over the course of the test. Chemical analysis results from these soil samples will be used to evaluate correlations between mine dog detection performance and seasonal weather conditions. This report documents the analytical chemical methods and results from the fifth batch of soils received. This batch contained samples from Kharga, Afghanistan collected in June 2003.

More Details

GICHD mine dog testing project - soil sample results #4

Bender, Susan F.; Phelan, James M.; Wood, Tyson B.; Barnett, James B.; Bender, Susan F.; Smallwood, Luisa M.; Donovan, Kelly L.

A mine dog evaluation project initiated by the Geneva International Center for Humanitarian Demining is evaluating the capability and reliability of mine detection dogs. The performance of field-operational mine detection dogs will be measured in test minefields in Afghanistan and Bosnia containing actual, but unfused landmines. Repeated performance testing over two years through various seasonal weather conditions will provide data simulating near real world conditions. Soil samples will be obtained adjacent to the buried targets repeatedly over the course of the test. Chemical analysis results from these soil samples will be used to evaluate correlations between mine dog detection performance and seasonal weather conditions. This report documents the analytical chemical methods and results from the fourth batch of soils received. This batch contained samples from Kharga, Afghanistan collected in April 2003 and Sarajevo, Bosnia collected in May 2003.

More Details

GICHD Mine Dog Testing Project - Soil Sample Results No.3

Bender, Susan F.; Phelan, James M.; Barnett, James B.; Bender, Susan F.; Smallwood, Luisa M.

A mine dog evaluation project initiated by the Geneva International Center for Humanitarian Demining is evaluating the capability and reliability of mine detection dogs. The performance of field-operational mine detection dogs will be measured in test minefields in Afghanistan and Bosnia containing actual, but unfused landmines. Repeated performance testing over two years through various seasonal weather conditions will provide data simulating near real world conditions. Soil samples will be obtained adjacent to the buried targets repeatedly over the course of the test. Chemical analysis results from these soil samples will be used to evaluate correlations between mine dog detection performance and seasonal weather conditions. This report documents the analytical chemical methods and results from the third batch of soils received. This batch contained samples from Kharga, Afghanistan collected in October 2002.

More Details

Measurement and Modeling of Energetic Material Mass Transfer to Soil Pore Water - Project CP-1227 Annual Technical Report

Phelan, James M.; Phelan, James M.; Webb, Stephen W.; Romero, Joseph V.; Barnett, James B.; Bohlken, Fawn A.

Military test and training ranges operate with live fire engagements to provide realism important to the maintenance of key tactical skills. Ordnance detonations during these operations typically produce minute residues of parent explosive chemical compounds. Occasional low order detonations also disperse solid phase energetic material onto the surface soil. These detonation remnants are implicated in chemical contamination impacts to groundwater on a limited set of ranges where environmental characterization projects have occurred. Key questions arise regarding how these residues and the environmental conditions (e.g. weather and geostratigraphy) contribute to groundwater pollution impacts. This report documents interim results of experimental work evaluating mass transfer processes from solid phase energetics to soil pore water. The experimental work is used as a basis to formulate a mass transfer numerical model, which has been incorporated into the porous media simulation code T2TNT. Experimental work to date with Composition B explosive has shown that column tests typically produce effluents near the temperature dependent solubility limits for RDX and TNT. The influence of water flow rate, temperature, porous media saturation and mass loading is documented. The mass transfer model formulation uses a mass transfer coefficient and surface area function and shows good agreement with the experimental data. Continued experimental work is necessary to evaluate solid phase particle size and 2-dimensional effects, and actual low order detonation debris. Simulation model improvements will continue leading to a capability to complete screening assessments of the impacts of military range operations on groundwater quality.

More Details

Viability of Applying Curie Point Pyrolysis/Gas Chromatography Techniques for Characterization of Ammonium Perchlorate Based Propellants

Barnett, James B.

Curie Point pyrolysis-gas chromatography was investigated for use as a tool for characterization of aged ammonium perchlorate based composite propellants (1). Successful application of the technique will support the surveillance program for the Explosives Materials and Subsystems Department (1). Propellant samples were prepared by separating the propellant into reacted (oxidated) and unreacted zones. The experimental design included the determination of system reliability followed by, reproducibility, sample preparation and analysis of pyrolysis products. Polystyrene was used to verify the reliability of the system and showed good reproducibility. Application of the technique showed high variation in the data. Modifications to sample preparation did not enhance the reproducibility. It was determined that the high concentration of ammonium perchlorate in the propellant matrix was compromising the repeatability of the analysis.

More Details

Characterization of Scrap Materials for Mass Detonating Energetic Materials - Final Report, Project CU1194

Phelan, James M.; Barnett, James B.

Military test and training ranges generate scrap materials from targets and ordnance debris. These materials are routinely removed from the range for recycling; however, energetic material residues in this range scrap has presented a significant safety hazard to operations personnel and damaged recycling equipment. The Strategic Environmental Research and Development Program (SERDP) sought proof of concept evaluations for monitoring technologies to identify energetic residues among range scrap. Sandia National Laboratories teamed with Nomadics, Inc. to evaluate the Nomadics FIDO vapor sensor for application to this problem. Laboratory tests were completed that determined the vapor-sensing threshold to be 10 to 20 ppt for TNT and 150 to 200 ppt for DNT. Field tests with the FIDO demonstrated the proof of concept that energetic material residues can be identified with vapor sensing in enclosed scrap bins. Items such as low order detonation debris, demolition block granules, and unused 81-mm mortars were detected quickly and with minimum effort. Conceptual designs for field-screening scrap for energetic material residues include handheld vapor sensing systems, batch scrap sensing systems, continuous conveyor sensing systems and a hot gas decontamination verification system.

More Details

Detection of Methyl Salicylate Transforted by Honeybees (Apis mellifera) Using Solid Phase Microextration (SPME) Fibers

Bender, Susan F.; Rodacy, Philip J.; Barnett, James B.

The ultimate goal of many environmental measurements is to determine the risk posed to humans or ecosystems by various contaminants. Conventional environmental monitoring typically requires extensive sampling grids covering several media including air, water, soil and vegetation. A far more efficient, innovative and inexpensive tactic has been found using honeybees as sampling mechanisms. Members from a single bee colony forage over large areas ({approx}2 x 10{sup 6} m{sup 2}), making tens of thousands of trips per day, and return to a fixed location where sampling can be conveniently conducted. The bees are in direct contact with the air, water, soil and vegetation where they encounter and collect any contaminants that are present in gaseous, liquid and particulate form. The monitoring of honeybees when they return to the hive provides a rapid method to assess chemical distributions and impacts (1). The primary goal of this technology is to evaluate the efficiency of the transport mechanism (honeybees) to the hive using preconcentrators to collect samples. Once the extent and nature of the contaminant exposure has been characterized, resources can be distributed and environmental monitoring designs efficiently directed to the most appropriate locations. Methyl salicylate, a chemical agent surrogate was used as the target compound in this study.

More Details
22 Results
22 Results