AlGaN HEMT Logic for Extreme Temperature Operation
Abstract not provided.
Abstract not provided.
Abstract not provided.
Recent years have seen an explosion in research efforts discovering and understanding novel electronic and optical properties of topological quantum materials (TQMs). In this LDRD, a synergistic effort of materials growth, characterization, electrical-magneto-optical measurements, combined with density functional theory and modeling has been established to address the unique properties of TQMs. Particularly, we have carried out extensive studies in search for Majorana fermions (MFs) in TQMs for topological quantum computation. Moreover, we have focused on three important science questions. 1) How can we controllably tune the properties of TQMs to make them suitable for quantum information applications? 2) What materials parameters are most important for successfully observing MFs in TQMs? 3) Can the physical properties of TQMs be tailored by topological band engineering? Results obtained in this LDRD not only deepen our current knowledge in fundamental quantum physics but also hold great promise for advanced electronic/photonic applications in information technologies. ACKNOWLEDGEMENTS The work at Sandia National Labs was supported by a Laboratory Directed Research and Development project. Device fabrication was performed at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. We are grateful to many people inside and outside Sandia for their support and fruitful collaborations. This report describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.
Journal of Electronic Materials
Gate length dependent (80 nm–5000 mm) radio frequency measurements to extract saturation velocity are reported for Al0.85Ga0.15N/Al0.7Ga0.3N high electron mobility transistors fabricated into radio frequency devices using electron beam lithography. Direct current characterization revealed the threshold voltage shifting positively with increasing gate length, with devices changing from depletion mode to enhancement mode when the gate length was greater than or equal to 450 nm. Transconductance varied from 10 mS/mm to 25 mS/mm, with the 450 nm device having the highest values. Maximum drain current density was 268 mA/mm at 10 V gate bias. Scattering-parameter characterization revealed a maximum unity gain bandwidth (fT) of 28 GHz, achieved by the 80 nm gate length device. A saturation velocity value of 3.8 × 106 cm/s, or 35% of the maximum saturation velocity reported for GaN, was extracted from the fT measurements.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Applied Physics Letters
Abstract not provided.
Abstract not provided.
Abstract not provided.
IEEE Electron Device Letters
Al-rich AlGaN-channel high electron mobility transistors with 80-nm long gates and 85% (70%) Al in the barrier (channel) were evaluated for RF performance. The dc characteristics include a maximum current of 160 mA/mm with a transconductance of 24 mS/mm, limited by source and drain contacts, and an on/off current ratio of 109. fT of 28.4 GHz and fMAX of 18.5 GHz were determined from small-signal S-parameter measurements. Output power density of 0.38 W/mm was realized at 3 GHz in a power sweep using on-wafer load pull techniques.
Abstract not provided.
Applied Physics Letters
The ability to control the light-matter interaction with an external stimulus is a very active area of research since it creates exciting new opportunities for designing optoelectronic devices. Recently, plasmonic metasurfaces have proven to be suitable candidates for achieving a strong light-matter interaction with various types of optical transitions, including intersubband transitions (ISTs) in semiconductor quantum wells (QWs). For voltage modulation of the light-matter interaction, plasmonic metasurfaces coupled to ISTs offer unique advantages since the parameters determining the strength of the interaction can be independently engineered. In this work, we report a proof-of-concept demonstration of a new approach to voltage-tune the coupling between ISTs in QWs and a plasmonic metasurface. In contrast to previous approaches, the IST strength is here modified via control of the electron populations in QWs located in the near field of the metasurface. By turning on and off the ISTs in the semiconductor QWs, we observe a modulation of the optical response of the IST coupled metasurface due to modulation of the coupled light-matter states. Because of the electrostatic design, our device exhibits an extremely low leakage current of ∼6 pA at a maximum operating bias of +1 V and therefore very low power dissipation. Our approach provides a new direction for designing voltage-tunable metasurface-based optical modulators.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Applied Physics Letters
Considering the power constrained scaling of silicon complementary metal-oxide-semiconductor technology, the use of high mobility III-V compound semiconductors such as In0.53Ga0.47As in conjunction with high-κ dielectrics is becoming a promising option for future n-type metal-oxide-semiconductor field-effect-transistors. Development of low dissipation field-effect tunable III-V based photonic devices integrated with high-κ dielectrics is therefore very appealing from a technological perspective. In this work, we present an experimental realization of a monolithically integrable, field-effect-tunable, III-V hybrid metasurface operating at long-wave-infrared spectral bands. Our device relies on strong light-matter coupling between epsilon-near-zero (ENZ) modes of an ultra-thin In0.53Ga0.47As layer and the dipole resonances of a complementary plasmonic metasurface. The tuning mechanism of our device is based on field-effect modulation, where we modulate the coupling between the ENZ mode and the metasurface by modifying the carrier density in the ENZ layer using an external bias voltage. Modulating the bias voltage between ±2 V, we deplete and accumulate carriers in the ENZ layer, which result in spectrally tuning the eigenfrequency of the upper polariton branch at 13 μm by 480 nm and modulating the reflectance by 15%, all with leakage current densities less than 1 μA/cm2. Our wavelength scalable approach demonstrates the possibility of designing on-chip voltage-tunable filters compatible with III-V based focal plane arrays at mid- and long-wave-infrared wavelengths.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Physical Review. X
Abstract not provided.
Optics Express
We experimentally demonstrated an actively tunable optical filter that controls the amplitude of reflected long-wave-infrared light in two separate spectral regions concurrently. Our device exploits the dependence of the excitation energy of plasmons in a continuous and unpatterned sheet of graphene on the Fermi-level, which can be controlled via conventional electrostatic gating. The filter enables simultaneous modification of two distinct spectral bands whose positions are dictated by the device geometry and graphene plasmon dispersion. Within these bands, the reflected amplitude can be varied by over 15% and resonance positions can be shifted by over 90 cm-1. Electromagnetic simulations verify that tuning arises through coupling of incident light to graphene plasmons by a grating structure. Importantly, the tunable range is determined by a combination of graphene properties, device structure, and the surrounding dielectrics, which dictate the plasmon dispersion. Thus, the underlying design shown here isapplicable across a broad range of infrared frequencies.
Abstract not provided.
Abstract not provided.
Optica
Optical communication systems increasingly require electrooptical modulators that deliver high modulation speeds across a large optical bandwidth with a small device footprint and a CMOS-compatible fabrication process. Although silicon photonic modulators based on transparent conducting oxides (TCOs) have shown promise for delivering on these requirements, modulation speeds to date have been limited. Here, we describe the design, fabrication, and performance of a fast, compact electroabsorption modulator based on TCOs. The modulator works by using bias voltage to increase the carrier density in the conducting oxide, which changes the permittivity and hence optical attenuation by almost 10 dB. Under bias, light is tightly confined to the conducting oxide layer through nonresonant epsilon-near-zero (ENZ) effects, which enable modulation over a broad range of wavelengths in the telecommunications band. Our approach features simple integration with passive silicon waveguides, the use of stable inorganic materials, and the ability to modulate both transverse electric and magnetic polarizations with the same device design. Using a 4-μm-long modulator and a drive voltage of 2 Vpp, we demonstrate digital modulation at rates of 2.5 Gb/s. We report broadband operation with a 6.5 dB extinction ratio across the 1530–1590 nm band and a 10 dB insertion loss. This work verifies that high-speed ENZ devices can be created using conducting oxide materials and paves the way for additional technology development that could have a broad impact on future optical communications systems.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Technical Digest - International Electron Devices Meeting, IEDM
Qubits based on transistor-like Si MOS nanodevices are promising for quantum computing. In this work, we demonstrate a double quantum dot spin qubit that is all-electrically controlled without the need for any external components, like micromagnets, that could complicate integration. Universal control of the qubit is achieved through spin-orbit-like and exchange interactions. Using single shot readout, we show both DC- and AC-control techniques. The fabrication technology used is completely compatible with CMOS.
Abstract not provided.
Journal of Vacuum Science and Technology B: Nanotechnology and Microelectronics
The manufacturing tolerances of a stencil-lithography variant, membrane projection lithography, were investigated. In the first part of this work, electron beam lithography was used to create stencils with a range of linewidths. These patterns were transferred into the stencil membrane and used to pattern metallic lines on vertical silicon faces. Only the largest lines, with a nominal width of 84 nm, were resolved, resulting in 45 ± 10 nm (average ± standard deviation) as deposited with 135-nm spacing. Although written in the e-beam write software file as 84-nm in width, the lines exhibited linewidth bias. This can largely be attributed to nonvertical sidewalls inherent to dry etching techniques that cause proportionally larger impact with decreasing feature size. The line edge roughness can be significantly attributed to the grain structure of the aluminum nitride stencil membrane. In the second part of this work, the spatial uniformity of optically defined (as opposed to e-beam written) metamaterial structures over large areas was assessed. A Fourier transform infrared spectrometer microscope was used to collect the reflection spectra of samples with optically defined vertical split ring from 25 spatially resolved 300 × 300 μm regions in a 1-cm2 area. The technique is shown to provide a qualitative measure of the uniformity of the inclusions.
Review of Scientific Instruments
We demonstrate a capability of deterministic doping at the single atom level using a combination of direct write focused ion beam and solid-state ion detectors. The focused ion beam system can position a single ion to within 35 nm of a targeted location and the detection system is sensitive to single low energy heavy ions. This platform can be used to deterministically fabricate single atom devices in materials where the nanostructure and ion detectors can be integrated, including donor-based qubits in Si and color centers in diamond.
Abstract not provided.
Abstract not provided.
International Conference on Optical MEMS and Nanophotonics
We examine integration of a patterned metal nanoantenna (or metasurface) directly onto long-wave infrared detectors. These structures show significantly improved external quantum efficiency compared to their traditional counterparts. We will show simulation and experimental results.
IEEE Photonics Journal
Epsilon-near-zero materials provide a new path for tailoring light-matter interactions at the nanoscale. In this paper, we analyze a compact electroabsorption modulator based on epsilon-near-zero confinement in transparent conducting oxide films. The nonresonant modulator operates through field-effect carrier density tuning. We compare the performance of modulators composed of two different conducting oxides, namely, indium oxide (In2O3) and cadmium oxide (CdO), and show that better modulation performance is achieved when using high-mobility (i.e., low loss) epsilon-near-zero materials such as CdO. In particular, we show that nonresonant electroabsorption modulators with submicron lengths and greater than 5 dB extinction ratios may be achieved through the proper selection of high-mobility transparent conducting oxides, opening a path for device miniaturization and increased modulation depth.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
IEEE Aerospace Conference Proceedings
High-quality infrared focal plane arrays (FPAs) are used in many satellite, astronomical, and terrestrial applications. These applications require highly-sensitive, low-noise FPAs, and therefore do not benefit from advances made in low-cost thermal imagers where reducing cost and enabling high-temperature operation drive device development. Infrared detectors used in FPAs have been made for decades from alloys of mercury cadmium telluride (MCT). These infrared detectors are nearing the believed limit of their performance. This limit, known in the infrared detector community as Rule 07, dictates the dark current floor for MCT detectors, in their traditional architecture, for a given temperature and cutoff wavelength. To overcome the bounds imposed by Rule 07, many groups are working on detector compounds other than MCT. We focus on detectors employing III-V-based gallium-free InAsSb superlattice active regions while also changing the basic architecture of the pixel to improve signal-to-noise. Our architecture relies on a resonant, metallic, subwavelength nanoantenna patterned on the absorber surface, in combination with a Fabry-Pérot cavity, to couple the incoming radiation into tightly confined modes near the nanoantenna. This confinement of the incident energy in a thin layer allows us to greatly reduce the volume of the absorbing layer to a fraction of the free-space wavelength, yielding a corresponding reduction in dark current from spontaneously generated electron-hole pairs in the absorber material. This architecture is detector material agnostic and could be applied to MCT detector structures as well, although we focus on using superlattice antimonide-based detector materials. This detector concept has been applied to both mid-wave (3-5 μm) and longwave (8-12 μm) infrared detectors and absorbers. Here we examine long-wave devices, as these detectors currently have a larger gap between desired device performance and that of currently existing detectors. The measured structures show an external quantum efficiency exceeding 50%. We present a comparison of the modeled and measured photoresponse of these detectors and compare these detectors to currently available commercial detectors using relevant metrics such as external quantum efficiency. We also discuss modeling of crosstalk between adjacent pixels and its influence on the potential for a dual-wavelength detector. Finally, we evaluate potential advances in these detectors that may occur in the near future.
Abstract not provided.