The addition of a common amino acid, phenylalanine, to a Layer-by-Layer (LbL) deposited polyelectrolyte (PE) film on a nanoporous membrane can increase its ionic selectivity over a PE film without the added amino acid. The addition of phenylalanine is inspired by detailed knowledge of the structure of the channelrhodopsins family of protein ion channels, where phenylalanine plays an instrumental role in facilitating sodium ion transport. The normally deposited and crosslinked PE films increase the cationic selectivity of a support membrane in a controllable manner where higher selectivity is achieved with thicker PE coatings, which in turn also increases the ionic resistance of the membrane. The increased ionic selectivity is desired while the increased resistance is not. We show that through incorporation of phenylalanine during the LbL deposition process, in solutions of NaCl with concentrations ranging from 0.1 to 100 mM, the ionic selectivity can be increased independently of the membrane resistance. Specifically, the addition is shown to increase the cationic transference of the PE films from 81.4% to 86.4%, an increase on par with PE films that are nearly triple the thickness while exhibiting much lower resistance compared to the thicker coatings, where the phenylalanine incorporated PE films display an area specific resistance of 1.81 Ω cm2in 100 mM NaCl while much thicker PE membranes show a higher resistance of 2.75 Ω cm2in the same 100 mM NaCl solution.
Hydrogen lithography has been used to template phosphine-based surface chemistry to fabricate atomic-scale devices, a process we abbreviate as atomic precision advanced manufacturing (APAM). Here, we use mid-infrared variable angle spectroscopic ellipsometry (IR-VASE) to characterize single-nanometer thickness phosphorus dopant layers (δ-layers) in silicon made using APAM compatible processes. A large Drude response is directly attributable to the δ-layer and can be used for nondestructive monitoring of the condition of the APAM layer when integrating additional processing steps. The carrier density and mobility extracted from our room temperature IR-VASE measurements are consistent with cryogenic magneto-transport measurements, showing that APAM δ-layers function at room temperature. Finally, the permittivity extracted from these measurements shows that the doping in the APAM δ-layers is so large that their low-frequency in-plane response is reminiscent of a silicide. However, there is no indication of a plasma resonance, likely due to reduced dimensionality and/or low scattering lifetime.
This study describes the evolving state of electrolyte and corrosion processes associated with sodium chloride on copper at the initial stage of corrosion and the critical implications of this behavior on controlling kinetics and damage distributions. Sodium chloride droplets were placed on copper in humid conditions and the resulting electrolyte properties, corrosion products and damage were characterized over time using time-lapse imaging, micro Raman spectroscopy, TOF-SIMS and optical profilometry. Within minutes of NaCl droplet placement, NaOH-rich films resultant from oxygen reduction advanced stepwise from the droplets, leaving behind concentric trenching attack patterns suggestive of moving anode-cathode pairs at the alkaline film front. Corrosion attack under these spreading alkaline films was up to 10x greater than under the original NaCl drops. Furthermore, solid Cu2Cl(OH)3 shells formed over the surface of the NaCl drops within hours of exposure. Thermodynamic modeling along with immersed electrochemical experiments in simulated droplet and films electrolytes were used to rationalize this behavior and build a description of the rapidly evolving corroding system.
Mangolini, Filippo; Krick, Brandon A.; Jacobs, Tevis D.B.; Khanal, Subarna R.; Streller, Frank; McClimon, J.B.; Hilbert, James; Prasad, Somuri V.; Scharf, Thomas W.; Ohlhausen, J.A.; Lukes, Jennifer R.; Sawyer, W.G.; Carpick, Robert W.
Harsh environments pose materials durability challenges across the automotive, aerospace, and manufacturing sectors, and beyond. While amorphous carbon materials have been used as coatings in many environmentally-demanding applications owing to their unique mechanical, electrical, and optical properties, their limited thermal stability and high reactivity in oxidizing environments have impeded their use in many technologies. Silicon- and oxygen-containing hydrogenated amorphous carbon (a-C:H:Si:O) films are promising for several applications because of their higher thermal stability and lower residual stress compared to hydrogenated amorphous carbon (a-C:H). However, an understanding of their superior thermo-oxidative stability compared to a-C:H is lacking, as it has been inhibited by the intrinsic challenge of characterizing an amorphous, multi-component material. Here, we show that introducing silicon and oxygen in a-C:H slightly enhances the thermal stability in vacuum, but tremendously increases the thermo-oxidative stability and the resistance to degradation upon exposure to the harsh conditions of low Earth orbit (LEO). The latter is demonstrated by having mounted samples of a-C:H:Si:O on the exterior of the International Space Station via the Materials International Space Station (MISSE) mission 7b. Exposing lightly-doped a-C:H:Si:O to elevated temperatures under aerobic conditions or to LEO causes carbon volatilization in the near-surface region, producing a silica surface layer that protects the underlying carbon from further removal. These findings provide a novel physically-based understanding of the superior stability of a-C:H:Si:O in harsh environments compared to a-C:H.
Mangolini, Filippo M.; Mangolini, Filippo M.; Koshigan, Komlavi D.; Koshigan, Komlavi D.; Van Benthem, Mark V.; Van Benthem, Mark V.; Ohlhausen, J.A.; Ohlhausen, J.A.; McClimon, J B.; McClimon, J B.; Hilbert, James A.; Hilbert, James A.; Fontaine, Julien F.; Fontaine, Julien F.; Carpick, Robert W.; Carpick, Robert W.
The Sunshine to Petrol effort at Sandia National Laboratories aims to convert CO 2 and water to liquid hydrocarbon fuel precursors using concentrated solar energy with redox-active metal oxide systems, such as ferrites: Fe 3O 4→3FeO+ 0.5O 2 (>1350°C) 3FeO + CO 2→Fe 3O 4 + CO (<1200°C). However, the ferrite materials are not repeatedly reactive on their own and require a support, such as yttria-stabilized zirconia (YSZ). The ferrite-support interaction is not well defined, as there has been little fundamental characterization of these oxides at the high temperatures and conditions present in these cycles. We have investigated the microstructure, structure-property relationships, and the role of the support on redox behavior of the ferrite composites. In-situ capabilities to elucidate chemical reactions under operating conditions have been developed. The synthesis, structural characterization (room and high- temperature x-ray diffraction, secondary ion mass spectroscopy, scanning electron microscopy), and thermogravimetric analysis of YSZ-supported ferrites will be discussed.