Publications

4 Results
Skip to search filters

Defect-free thin film membranes for H2 separation and isolation

Nenoff, T.M.; Abraham, Ion C.; Thornberg, Steven M.; Hunka, Deborah E.; Jarek, Russell L.

There is a great need for robust, defect-free, highly selective molecular sieve (zeolite) thin film membranes for light gas molecule separations in hydrogen fuel production from CH{sub 4} or H{sub 2}O sources. In particular, we are interested in (1) separating and isolating H{sub 2} from H{sub 2}O and CH{sub 4}, CO, CO{sub 2}, O{sub 2}, N{sub 2} gases; (2) water management in PEMs and (3) as a replacement for expensive Pt catalysts needed for PEMs. Current hydrogen separation membranes are based on Pd alloys or on chemically and mechanically unstable organic polymer membranes. The use of molecular sieves brings a stable (chemically and mechanically stable) inorganic matrix to the membrane [1-3]. The crystalline frameworks have 'tunable' pores that are capable of size exclusion separations. The frameworks are made of inorganic oxides (e.g., silicates, aluminosilicates, and phosphates) that bring different charge and electrostatic attraction forces to the separation media. The resultant materials have high separation abilities plus inherent thermal stability over 600 C and chemical stability. Furthermore, the crystallographically defined (<1 {angstrom} deviation) pore sizes and shapes allow for size exclusion of very similarly sized molecules. In contrast, organic polymer membranes are successful based on diffusion separations, not size exclusion. We envision the impact of positive results from this project in the near term with hydrocarbon fuels, and long term with biomass fuels. There is a great need for robust, defect-free, highly selective molecular sieve (zeolite) thin film membranes for light gas molecule separations in hydrogen fuel production from CH{sub 4} or H{sub 2}O sources. They contain an inherent chemical, thermal and mechanical stability not found in conventional membrane materials. Our goal is to utilize those zeolitic qualities in membranes for the separation of light gases, and to eventually partner with industry to commercialize the membranes. To date, we have successfully: (1) Demonstrated (through synthesis, characterization and permeation testing) both the ability to synthesize defect-free zeolitic membranes and use them as size selective gas separation membranes; these include aluminosilicates and silicates; (2) Built and operated our in-house light gas permeation unit; we have amended it to enable testing of H{sub 2}S gases, mixed gases and at high temperatures. We are initiating further modification by designing and building an upgraded unit that will allow for temperatures up to 500 C, steady-state vs. pressure driven permeation, and mixed gas resolution through GC/MS analysis; (3) Have shown in preliminary experiments high selectivity for H{sub 2} from binary and industrially-relevant mixed gas streams under low operating pressures of 16 psig; (4) Synthesized membranes on commercially available oxide and composite disks (this is in addition to successes we have in synthesizing zeolitic membranes to tubular supports [9]); and (5) Signed a non-disclosure agreement with industrial partner G. E. Dolbear & Associates, Inc., and have ongoing agreements with Pall Corporation for in-kind support supplies and interest in scale-up for commercialization.

More Details

Characterization of SF6/Argon Plasmas for Microelectronics Applications

Hebner, Gregory A.; Abraham, Ion C.; Woodworth, Joseph R.

This report documents measurements in inductively driven plasmas containing SF{sub 6}/Argon gas mixtures. The data in this report is presented in a series of appendices with a minimum of interpretation. During the course of this work we investigated: the electron and negative ion density using microwave interferometry and laser photodetachment; the optical emission; plasma species using mass spectrometry, and the ion energy distributions at the surface of the rf biased electrode in several configurations. The goal of this work was to assemble a consistent set of data to understand the important chemical mechanisms in SF{sub 6} based processing of materials and to validate models of the gas and surface processes.

More Details
4 Results
4 Results