Publications

30 Results
Skip to search filters

A pseudo-two-dimensional (P2D) model for FeS2 conversion cathode batteries

Journal of Power Sources

Horner, Jeffrey S.; Whang, Grace W.; Kolesnichenko, Igor K.; Lambert, Timothy N.; Dunn, Bruce S.; Roberts, Scott A.

Conversion cathode materials are gaining interest for secondary batteries due to their high theoretical energy and power density. However, practical application as a secondary battery material is currently limited by practical issues such as poor cyclability. To better understand these materials, we have, for this study, developed a pseudo-two-dimensional model for conversion cathodes. We apply this model to FeS2 – a material that undergoes intercalation followed by conversion during discharge. The model is derived from the half-cell Doyle–Fuller–Newman model with additional loss terms added to reflect the converted shell resistance as the reaction progresses. We also account for polydisperse active material particles by incorporating a variable active surface area and effective particle radius. Using the model, we show that the leading loss mechanisms for FeS2 are associated with solid-state diffusion and electrical transport limitations through the converted shell material. The polydisperse simulations are also compared to a monodisperse system, and we show that polydispersity has very little effect on the intercalation behavior yet leads to capacity loss during the conversion reaction. Finally, we provide the code as an open-source Python Battery Mathematical Modeling (PyBaMM) model that can be used to identify performance limitations for other conversion cathode materials.

More Details

Temperature-Dependent Reaction Pathways in FeS2: Reversibility and the Electrochemical Formation of Fe3S4

Chemistry of Materials

Whang, Grace; Ashby, David S.; Lapp, Aliya S.; Hsieh, Yi C.; Butts, Danielle M.; Kolesnichenko, Igor K.; Wu, Pu W.; Lambert, Timothy N.; Talin, A.A.; Dunn, Bruce S.

The present study has used a variety of characterization techniques to determine the products and reaction pathways involved in the rechargeable Li-FeS2 system. We revisit both the initial lithiation and subsequent cycling of FeS2 employing an ionic liquid electrolyte to investigate the intermediate and final charge products formed under varying thermal conditions (room temperature to 100 °C). The detection of Li2S and hexagonal FeS as the intermediate phases in the initial lithiation and the electrochemical formation of greigite, Fe3S4, as a charge product in the rechargeable reaction differ significantly from previous reports. The conditions for Fe3S4 formation are shown to be dependent on both the temperature (∼60 °C) and the availability of sulfur to drive a FeS to Fe3S4 transformation. Upon further cycling, Fe3S4 transforms to a lower sulfur content iron sulfide phase, a process which coincides with the loss of sulfur based on the new reaction pathways established in this work. The connection between sulfur loss, capacity fade, and charge product composition highlights the critical need to retain sulfur in the active material upon cycling.

More Details

Understanding the Electrochemical Performance of FeS2 Conversion Cathodes

ACS Applied Materials and Interfaces

Ashby, David S.; Horner, Jeffrey S.; Whang, Grace W.; Lapp, Aliya S.; Roberts, Scott A.; Dunn, Bruce S.; Kolesnichenko, Igor K.; Lambert, Timothy N.; Talin, A.A.

Conversion cathodes represent a viable route to improve rechargeable Li+ battery energy densities, but their poor electrochemical stability and power density have impeded their practical implementation. Here, we explore the impact cell fabrication, electrolyte interaction, and current density have on the electrochemical performance of FeS2/Li cells by deconvoluting the contributions of the various conversion and intercalation reactions to the overall capacity. By varying the slurry composition and applied pressure, we determine that the capacity loss is primarily due to the large volume changes during (de)lithiation, leading to a degradation of the conductive matrix. Through the application of an external pressure, the loss is minimized by maintaining the conductive matrix. Further, we determine that polysulfide loss can be minimized by increasing the current density (>C/10), thus reducing the sulfur formation period. Analysis of the kinetics determines that the conversion reactions are rate-limiting, specifically the formation of metallic iron at rates above C/8. While focused on FeS2, our findings on the influence of pressure, electrolyte interaction, and kinetics are broadly applicable to other conversion cathode systems.

More Details

Morphology and Dynamics in Hydroxide-Conducting Polysulfones

ACS Applied Polymer Materials

Frischknecht, Amalie F.; In 'T Veld, Pieter J.; Kolesnichenko, Igor K.; Arnot, David J.; Lambert, Timothy N.

In alkaline zinc-manganese dioxide batteries, there is a need for selective polymeric separators that have good hydroxide ion conductivity but that prevent the transport of zincate (Zn(OH)4)2-. Here we investigate the nanoscale structure and hydroxide transport in two cationic polysulfones that are promising for these separators. We present the synthesis and characterization for a tetraethylammonium-functionalized polysulfone (TEA-PSU) and compare it to our previous work on an N-butylimidazolium-functionalized polysulfone (NBI-PSU). We perform atomistic molecular dynamics (MD) simulations of both polymers at experimentally relevant water contents. The MD simulations show that both polymers develop well phase separated nanoscale water domains that percolate through the polymer. Calculation of the total scattering intensity from the MD simulations reveal weak or nonexistent ionomer peaks at low wave vectors. The lack of an ionomer peak is due to a loss of contrast in the scattering. The small water domains in both polymers, with median diameters on the order of 0.5-0.7 nm, lead to hydroxide and water diffusion constants that are 1-2 orders of magnitude smaller than their values in bulk water. This confinement lowers the conductivity but also may explain the strong exclusion of zincate from the PSU membranes seen experimentally.

More Details

Polymer intercalation synthesis of glycoboehmite nanosheets

Applied Clay Science

Bell, Nelson S.; Rodriguez, Mark A.; Kotula, Paul G.; Kruichak, Jessica N.; Hernandez-Sanchez, Bernadette A.; Casillas, Maddison R.; Kolesnichenko, Igor K.; Matteo, Edward N.

Novel materials based on the aluminum oxyhydroxide boehmite phase were prepared using a glycothermal reaction in 1,4-butanediol. Under the synthesis conditions, the atomic structure of the boehmite phase is altered by the glycol solvent in place of the interlayer hydroxyl groups, creating glycoboehmite. The structure of glycoboehmite was examined in detail to determine that glycol molecules are intercalated in a bilayer structure, which would suggest that there is twice the expansion identified previously in the literature. This precursor phase enables synthesis of two new phases that incorporate either polyvinylpyrrolidone or hydroxylpropyl cellulose nonionic polymers. These new materials exhibit changes in morphology, thermal properties, and surface chemistry. All the intercalated phases were investigated using PXRD, HRSTEM, SEM, FT-IR, TGA/DSC, zeta potential titrations, and specific surface area measurement. These intercalation polymers are non-ionic and interact through wetting interactions and hydrogen bonding, rather than by chemisorption or chelation with the aluminum ions in the structure.

More Details

Evaluation of Engineered Barrier Systems FY21 Report

Matteo, Edward N.; Dewers, Thomas D.; Hadgu, Teklu H.; Bell, Nelson S.; Kotula, Paul G.; Kruichak, Jessica N.; Sanchez-Hernandez, Bernadette S.; Casilas, M.C.; Kolesnichenko, Igor K.; Caporuscio, F.A.; Sauer, K.B.; Rock, M.J.; Zheng, L.Z.; Borglin, S.B.; Lammers, L.L.; Whittaker, M.W.; Zarzycki, P.Z.; Fox, P.F.; Chang, C.C.; Subramanian, N.S.; Nico, P.N.; Tournassat, C.T.; Chou, C.C.; Xu, H.X.; Singer, E.S.; Steefel, C.I.; Peruzzo, L.P.; Wu, Y.W.

This report describes research and development (R&D) activities conducted during fiscal year 2021 (FY21) specifically related to the Engineered Barrier System (EBS) R&D Work Package in the Spent Fuel and Waste Science and Technology (SFWST) Campaign supported by the United States (U.S.) Department of Energy (DOE). The R&D activities focus on understanding EBS component evolution and interactions within the EBS, as well as interactions between the host media and the EBS. A primary goal is to advance the development of process models that can be implemented directly within the Generic Disposal System Analysis (GDSA) platform or that can contribute to the safety case in some manner such as building confidence, providing further insight into the processes being modeled, establishing better constraints on barrier performance, etc.

More Details

Electrochemical Modeling of GITT Measurements for Improved Solid-State Diffusion Coefficient Evaluation

ACS Applied Energy Materials

Horner, Jeffrey S.; Whang, Grace; Ashby, David; Kolesnichenko, Igor K.; Lambert, Timothy N.; Dunn, Bruce S.; Talin, A.A.; Roberts, Scott A.

The galvanostatic intermittent titration technique (GITT) is widely used to evaluate solid-state diffusion coefficients in electrochemical systems. However, the existing analysis methods for GITT data require numerous assumptions, and the derived diffusion coefficients typically are not independently validated. To investigate the validity of the assumptions and derived diffusion coefficients, we employ a direct-pulse fitting method for interpreting the GITT data that involves numerically fitting an electrochemical pulse and subsequent relaxation to a one-dimensional, single-particle, electrochemical model coupled with non-ideal transport to directly evaluate diffusion coefficients. Our non-ideal diffusion coefficients, which are extracted from GITT measurements of the intercalation regime of FeS2 and independently verified through discharge predictions, prove to be 2 orders of magnitude more accurate than ideal diffusion coefficients extracted using conventional methods. We further extend our model to a polydisperse set of particles to show the validity of a single-particle approach when the modeled radius is proportional to the total volume-to-surface-area ratio of the system.

More Details

Ultradoping Boron on Si(100) via Solvothermal Chemistry**

Chemistry - A European Journal

Frederick, Esther F.; Campbell, Quinn C.; Kolesnichenko, Igor K.; Pena, Luis F.; Benavidez, Angelica; Anderson, Evan M.; Wheeler, David R.; Misra, Shashank M.

Ultradoping introduces unprecedented dopant levels into Si, which transforms its electronic behavior and enables its use as a next-generation electronic material. Commercialization of ultradoping is currently limited by gas-phase ultra-high vacuum requirements. Solvothermal chemistry is amenable to scale-up. However, an integral part of ultradoping is a direct chemical bond between dopants and Si, and solvothermal dopant-Si surface reactions are not well-developed. This work provides the first quantified demonstration of achieving ultradoping concentrations of boron (∼1e14 cm2) by using a solvothermal process. Surface characterizations indicate the catalyst cross-reacted, which led to multiple surface products and caused ambiguity in experimental confirmation of direct surface attachment. Density functional theory computations elucidate that the reaction results in direct B−Si surface bonds. This proof-of-principle work lays groundwork for emerging solvothermal ultradoping processes.

More Details

Advances in Alkaline Conversion Batteries for Grid Storage Applications

Lambert, Timothy N.; Schorr, Noah B.; Arnot, David J.; Lim, Matthew B.; Bell, Nelson S.; Bruck, Andrea M.; Duay, Jonathon W.; Kelly, Maria.K.; Habing, Rachel L.; Ricketts, Logan S.; Vigil, Julian A.; Gallaway, Joshua W.; Kolesnichenko, Igor K.; Budy, Stephen M.; Ruiz, Elijah I.; Yadav, Gautam G.; Weiner, Meir W.; Upreti, Aditya U.; Huang, Jinchao H.; Nyce, Michael N.; Turney, Damon T.; Banerjee, Sanjoy B.; Magar, Birendra A.; Paudel, Nirajan P.; Vasiliev, Igor V.; Spoerke, Erik D.; Chalamala, Babu C.

Abstract not provided.

Ion-Selective Separators in Alkaline Zinc Batteries for Grid Storage Applications [Slides]

Kolesnichenko, Igor K.; Lim, Matthew B.; Arnot, David J.; Ruiz, Elijah I.; Yadav, Gautam G.; Nyce, Michael N.; Banerjee, Sanjoy B.; Lambert, Timothy N.

Grid-level energy storage systems are needed to enable intermittent renewables. Li-ion, Pb-acid battery systems have been implemented but pose safety and environmental risks. Successful grid storage must be safe, reliable, and low-cost.

More Details

Zincate-Blocking-Functionalized Polysulfone Separators for Secondary Zn-MnO2Batteries

ACS Applied Materials and Interfaces

Kolesnichenko, Igor K.; Arnot, David J.; Lim, Matthew B.; Yadav, Gautam G.; Nyce, Michael; Huang, Jinchao; Banerjee, Sanjoy; Lambert, Timothy N.

Alkaline zinc-manganese dioxide (Zn-MnO2) batteries are well suited for grid storage applications because of their inherently safe, aqueous electrolyte and established materials supply chain, resulting in low production costs. With recent advances in the development of Cu/Bi-stabilized birnessite cathodes capable of the full 2-electron capacity equivalent of MnO2 (617 mA h/g), there is a need for selective separators that prevent zincate (Zn(OH)4)2- transport from the anode to the cathode during cycling, as this electrode system fails in the presence of dissolved zinc. Herein, we present the synthesis of N-butylimidazolium-functionalized polysulfone (NBI-PSU)-based separators and evaluate their ability to selectively transport hydroxide over zincate. We then examine their impact on the cycling of high depth of discharge Zn/(Cu/Bi-MnO2) batteries when inserted in between the cathode and anode. Initially, we establish our membranes' selectivity by performing zincate and hydroxide diffusion tests, showing a marked improvement in zincate-blocking (DZn (cm2/min): 0.17 ± 0.04 × 10-6 for 50-PSU, our most selective separator vs 2.0 ± 0.8 × 10-6 for Cellophane 350P00 and 5.7 ± 0.8 × 10-6 for Celgard 3501), while maintaining similar crossover rates for hydroxide (DOH (cm2/min): 9.4 ± 0.1 × 10-6 for 50-PSU vs 17 ± 0.5 × 10-6 for Cellophane 350P00 and 6.7 ± 0.6 × 10-6 for Celgard 3501). We then implement our membranes into cells and observe an improvement in cycle life over control cells containing only the commercial separators (cell lifetime extended from 21 to 79 cycles).

More Details
30 Results
30 Results