Sarma, Raktim S.; Xu, Jiaming X.; de Ceglia, Domenico d.; Carletti, Luca C.; Klem, John K.; Belkin, Mikhail A.; Brener, Igal B.
All-dielectric metasurfaces have recently led to a paradigm shift in nonlinear optics as they allow for circumventing the phase matching constraints of bulk crystals and offer high nonlinear conversion efficiencies when normalized by the light-matter interaction volume. Unlike bulk crystals, in all-dielectric metasurfaces nonlinear conversion efficiencies primarily rely on the material nonlinearity, field enhancements, and the modal overlaps, therefore most efforts to date have only focused on utilizing these degrees of freedom. In this work, we demonstrate that for second-harmonic generation in all-dielectric metasurfaces, an additional degree of freedom is the control of the polarity of the nonlinear susceptibility. We demonstrate that semiconductor heterostructures that support resonant nonlinearities based on quantum-engineered intersubband transitions provide this new degree of freedom. We can flip and control the polarity of the nonlinear susceptibility of the dielectric medium along the growth direction and couple it to the Mie-type photonic modes. Here we demonstrate that engineering the χ (2) polarity in the meta-atom enables the control of the second-harmonic radiation pattern and conversion efficiency. Our results therefore open a new direction for engineering and optimizing second-harmonic generation using all-dielectric intersubband nonlinear metasurfaces.
Since the discovery of the laser, optical nonlinearities have been at the core of efficient light conversion sources. Typically, thick transparent crystals or quasi-phase matched waveguides are utilized in conjunction with phase-matching techniques to select a single parametric process. In recent years, due to the rapid developments in artificially structured materials, optical frequency mixing has been achieved at the nanoscale in subwavelength resonators arrayed as metasurfaces. Phase matching becomes relaxed for these wavelength-scale structures, and all allowed nonlinear processes can, in principle, occur on an equal footing. This could promote harmonic generation via a cascaded (consisting of several frequency mixing steps) process. However, so far, all reported work on dielectric metasurfaces have assumed frequency mixing from a direct (single step) nonlinear process. In this work, we prove the existence of cascaded second-order optical nonlinearities by analyzing the second- and third-wave mixing from a highly nonlinear metasurface in conjunction with polarization selection rules and crystal symmetries. We find that the third-wave mixing signal from a cascaded process can be of comparable strength to that from conventional third-harmonic generation and that surface nonlinearities are the dominant mechanism that contributes to cascaded second-order nonlinearities in our metasurface.
Enhancing the efficiency of second-harmonic generation using all-dielectric metasurfaces to date has mostly focused on electromagnetic engineering of optical modes in the meta-atom. Further advances in nonlinear conversion efficiencies can be gained by engineering the material nonlinearities at the nanoscale, however this cannot be achieved using conventional materials. Semiconductor heterostructures that support resonant nonlinearities using quantum engineered intersubband transitions can provide this new degree of freedom. By simultaneously optimizing the heterostructures and meta-atoms, we experimentally realize an all-dielectric polaritonic metasurface with a maximum second-harmonic generation power conversion factor of 0.5 mW/W2 and power conversion efficiencies of 0.015% at nominal pump intensities of 11 kW/cm2. These conversion efficiencies are higher than the record values reported to date in all-dielectric nonlinear metasurfaces but with 3 orders of magnitude lower pump power. Our results therefore open a new direction for designing efficient nonlinear all-dielectric metasurfaces for new classical and quantum light sources.
In this work, we prove the existence of cascaded second-order nonlinearities in a dielectric metasurface by analyzing the second and third wave mixing signal in conjunction with crystal symmetry and polarization selection rules.
We demonstrate an extremely nonlinear all-dielectric metasurface that employs intersubband polaritons to achieve a second-harmonic conversion coefficient of 5 x 10-4 W-1 and second-harmonic power conversion efficiency of 0.015% at nominal pump intensities of 11 kW/cm2. Furthermore, through heterostructure design, we achieve microscopic control of the nonlinearity and demonstrate suppression or enhancement of second-harmonic generation by controlling the polarity of the resonant χ(2).
We present an experimental and numerical study of a terahertz metamaterial with a nonlinear response that is controllable via the relative structural arrangement of two stacked split ring resonator arrays. The first array is fabricated on an n-doped GaAs substrate, and the second array is fabricated vertically above the first using a polyimide spacer layer. Due to GaAs carrier dynamics, the on-resonance terahertz transmission at 0.4 THz varies in a nonlinear manner with incident terahertz power. The second resonator layer dampens this nonlinear response. In samples where the two layers are aligned, the resonance disappears, and the total nonlinear modulation of the on-resonance transmission decreases. The nonlinear modulation is restored in samples where an alignment offset is imposed between the two resonator arrays. Structurally tunable metamaterials and metasurfaces can therefore act as a design template for tunable nonlinear THz devices by controlling the coupling of confined electric fields to nonlinear phenomena in a complex material substrate or inclusion.
Despite their wide use in terahertz (THz) research and technology, the application spectra of photoconductive antenna (PCA) THz detectors are severely limited due to the relatively high optical gating power requirement. This originates from poor conversion efficiency of optical gate beam photons to photocurrent in materials with subpicosecond carrier lifetimes. Here we show that using an ultra-thin (160 nm), perfectly absorbing low-temperature grown GaAs metasurface as the photoconductive channel drastically improves the efficiency of THz PCA detectors. This is achieved through perfect absorption of the gate beam in a significantly reduced photoconductive volume, enabled by the metasurface. This Letter demonstrates that sensitive THz PCA detection is possible using optical gate powers as low as 5 μW-three orders of magnitude lower than gating powers used for conventionalPCAdetectors.We show that significantly higher optical gate powers are not necessary for optimal operation, as they do not improve the sensitivity to the THz field. This class of efficient PCA THz detectors opens doors for THz applications with low gate power requirements.
Ultrafast all-optical switching using Mie resonant metasurfaces requires both on-demand tunability of the wavefront of the light and ultrafast time response. However, devising a switching mechanism that has a high contrast between its "on"and "off"states without compromising speed is challenging. Here, we report the design of a tunable Mie resonant metasurface that achieves this behavior. Our approach utilizes a diffractive array of semiconductor resonators that support both dipolar and quadrupolar Mie resonances. By balancing the strengths of the dipole and quadrupole resonances, we can suppress radiation into the first diffraction order, thus creating a clearly delineated "off"-state at the operating wavelength. Then, we use optical injection of free- carriers to spectrally shift the multipoles and rebalance the multipole strengths, thereby enabling radiation into the diffraction order - all on an ultrafast timescale. We demonstrate ultrafast off-to-on switching with Ion/Ioff ≈ 5 modulation of the diffracted intensity and ultrafast on-to-off switching with Ion/Ioff ≈ 9 modulation. Both switches exhibit a fast τtr ≈ 2.7 ps relaxation time at 215 μJ cm-2 pump fluence. Further, we show that for higher fluences, the temporal response of the metasurface is governed by thermo-optic effects. This combination of multipole engineering with lattice diffraction opens design pathways for tunable metasurface-based integrated devices.
Mie-resonant dielectric metasurfaces are excellent candidates for both fundamental studies related to light-matter interactions and for numerous applications ranging from holography to sensing to nonlinear optics. To date, however, most applications using Mie metasurfaces utilize only weak light-matter interaction. Here, we go beyond the weak coupling regime and demonstrate for the first time strong polaritonic coupling between Mie photonic modes and intersubband (ISB) transitions in semiconductor heterostructures. Furthermore, along with demonstrating ISB polaritons with Rabi splitting as large as 10%, we also demonstrate the ability to tailor the strength of strong coupling by engineering either the semiconductor heterostructure or the photonic mode of the resonators. Unlike previous plasmonic-based works, our new all-dielectric metasurface approach to generate ISB polaritons is free from ohmic losses and has high optical damage thresholds, thereby making it ideal for creating novel and compact mid-infrared light sources based on nonlinear optics.
In this work, we investigate the linear optical response of a dielectric metasurface made of vertically-oriented germanium ellipses deposited on walls of a micron-scale cubic silicon nitride unit cell support matrix.
Hot-electron generation has been a topic of intense research for decades for numerous applications ranging from photodetection and photochemistry to biosensing. Recently, the technique of hot-electron generation using non-radiative decay of surface plasmons excited by metallic nanoantennas, or meta-atoms, in a metasurface has attracted attention. These metasurfaces can be designed with thicknesses on the order of the hot-electron diffusion length. The plasmonic resonances of these ultrathin metasurfaces can be tailored by changing the shape and size of the meta-atoms. One of the fundamental mechanisms leading to generation of hot-electrons in such systems is optical absorption, therefore, optimization of absorption is a key step in enhancing the performance of any metasurface based hot-electron device. Here we utilized an artificial intelligence-based approach, the genetic algorithm, to optimize absorption spectra of plasmonic metasurfaces. Using genetic algorithm optimization strategies, we designed a polarization insensitive plasmonic metasurface with 90% absorption at 1550 nm that does not require an optically thick ground plane. We fabricated and optically characterized the metasurface and our experimental results agree with simulations. Finally, we present a convolutional neural network that can predict the absorption spectra of metasurfaces never seen by the network, thereby eliminating the need for computationally expensive simulations. Our results suggest a new direction for optimizing hot-electron based photodetectors and sensors.
Hot-electron generation has been a topic of intense research for decades for numerous applications ranging from photodetection and photochemistry to biosensing. Recently, the technique of hot-electron generation using non-radiative decay of surface plasmons excited by metallic nanoantennas, or meta-atoms, in a metasurface has attracted attention. These metasurfaces can be designed with thicknesses on the order of the hot-electron diffusion length. The plasmonic resonances of these ultrathin metasurfaces can be tailored by changing the shape and size of the meta-atoms. One of the fundamental mechanisms leading to generation of hot-electrons in such systems is optical absorption, therefore, optimization of absorption is a key step in enhancing the performance of any metasurface based hot-electron device. Here we utilized an artificial intelligence-based approach, the genetic algorithm, to optimize absorption spectra of plasmonic metasurfaces. Using genetic algorithm optimization strategies, we designed a polarization insensitive plasmonic metasurface with 90% absorption at 1550 nm that does not require an optically thick ground plane. We fabricated and optically characterized the metasurface and our experimental results agree with simulations. Finally, we present a convolutional neural network that can predict the absorption spectra of metasurfaces never seen by the network, thereby eliminating the need for computationally expensive simulations. Our results suggest a new direction for optimizing hot-electron based photodetectors and sensors.
The color of light is a fundamental property of electromagnetic radiation; as such, control of the frequency is a cornerstone of modern optics. Nonlinear materials are typically used to generate new frequencies, however the use of time-variant systems provides an alternative approach. Utilizing a metasurface that supports a high-quality factor resonance, we demonstrate that a rapidly shifting refractive index will induce frequency conversion of light that is confined in the nanoresonator meta-atoms. We experimentally observe this frequency conversion and develop a time-dependent coupled mode theory model that well describes the system. The intersection of high quality-factor resonances, active materials, and ultrafast transient spectroscopy leads to the demonstration of metasurfaces operating in a time-variant regime that enables enhanced control over light-matter interaction.
Toroidal dielectric metasurface with a Q-factor of 728 in 1500 nm wavelength are reported. The resonance couples strongly to the environment, as demonstrated with a refractometric sensing experiment.
Zubyuk, Varvara V.; Vabishchevich, Polina V.; Shcherbakov, Maxim R.; Shorokhov, Alexander S.; Fedotova, Anna N.; Liu, Sheng; Keeler, Gordon; Dolgova, Tatyana V.; Staude, Isabelle; Brener, Igal B.; Fedyanin, Andrey A.
Saturable optical elements lie at the cornerstone of many modern optical systems. Regularly patterned quasi-planar nanostructures - metasurfaces - are known to facilitate nonlinear optical processes. Such subwavelength semiconductor nanostructures can potentially serve as saturable components. Here we report on the intensity-dependent reflectance of femtosecond laser pulses from semiconductor metasurfaces with Mie-type modes, caused by the absorption saturation. Arrays of GaAs nanocylinders with magnetic dipole resonances in the spectral vicinity of the GaAs bandgap demonstrate a reduced saturation intensity and increased self-modulation efficiency, an order of magnitude higher than bulk GaAs or unstructured GaAs films. By contrast, the reflection modulation is shown to be negligible in the CW regime for the same average intensities, indicating that the process is not the result of temperature effects. Our work provides a novel idea for low-power saturable elements based on nonthermal nature of saturation. We conclude by devising a high-quality metasurface that can be used, in theory, to further reduce the saturation fluence below 50 nJ/cm2.
High-harmonic generation (HHG) is a signature optical phenomenon of strongly driven, nonlinear optical systems. Specifically, the understanding of the HHG process in rare gases has played a key role in the development of attosecond science1. Recently, HHG has also been reported in solids, providing novel opportunities such as controlling strong-field and attosecond processes in dense optical media down to the nanoscale2. Here, we report HHG from a low-loss, indium-doped cadmium oxide thin film by leveraging the epsilon-near-zero (ENZ) effect3–8, whereby the real part of the material’s permittivity in certain spectral ranges vanishes, as well as the associated large resonant enhancement of the driving laser field. We find that ENZ-assisted harmonics exhibit a pronounced spectral redshift as well as linewidth broadening, resulting from the photo induced electron heating and the consequent time-dependent ENZ wavelength of the material. Our results provide a new platform to study strong-field and ultrafast electron dynamics in ENZ materials, reveal new degrees of freedom for spectral and temporal control of HHG, and open up the possibilities of compact solid-state attosecond light sources.
We demonstrate all-optical switching of high quality factor quasibound states in the continuum resonances in broken symmetry GaAs metasurfaces. By slightly breaking the symmetry of the GaAs nanoresonators, we enable leakage of symmetry protected bound states in the continuum (BICs) to free space that results in sharp spectral resonances with high quality factors of ∼500. We tune the resulting quasi-BIC resonances with ultrafast optical pumping at 800 nm and observe a 10 nm spectral blue shift of the resonance with pump fluences of less than 100 μJ cm-2. The spectral shift is achieved in an ultrafast time scale (<2.5 ps) and is caused by a shift in the refractive index mediated by the injection of free carriers into the GaAs resonators. An absolute reflectance change of 0.31 is measured with 150 μJ cm-2. Our results demonstrate a proof-of-concept that these broken symmetry metasurfaces can be modulated or switched at ultrafast switching speeds with higher contrast at low optical fluences (<100 μJ cm-2) than conventional Mie-metasurfaces.
In this work we show our results on the harmonic generation and nonlinear frequency mixing enhanced by Mie modes in GaAs metasurfaces. Moreover, we show enhancement and directionality control of the quantum dot emission embedded in the metasurface.
A prominent nonlinear optical phenomenon that is extensively studied using nanostructured materials is second-harmonic generation (SHG) as it has applications in various fields. Achieving efficient SHG from a nanostructure requires a large second-order nonlinear susceptibility of the material system and large electromagnetic fields. For practical applications, the nanostructures should also have low losses, high damage thresholds, large bandwidths, wavelength scalability, dual mode operation in transmission and reflection, monolithic integrability, and ease of fabrication. While various approaches have demonstrated efficient SHG, to the best of our knowledge, none have demonstrated all these desired qualities simultaneously. Here, we present a hybrid approach for realizing efficient SHG in an ultrathin dielectric-semiconductor nonlinear device with all the above-mentioned desired properties. Our approach uses high quality factor leaky mode resonances in dielectric metasurfaces that are coupled to intersubband transitions of semiconductor quantum wells. Using our device, we demonstrate SHG at pump wavelengths ranging from 8.5 to 11 μm, with a maximum second-harmonic nonlinear conversion factor of 1.1 mW/W2 and maximum second-harmonic conversion efficiency of 2.5 × 10-5 at modest pump intensities of 10 kW/cm2. Our results open a new direction for designing low loss, broadband, and efficient ultrathin nonlinear optical devices.
Metamaterials research has developed perfect absorbers from microwave to optical frequencies, mainly featuring planar metamaterials, also referred to as metasurfaces. In this study, we investigated vertically oriented metamaterials, which make use of the entire three-dimensional space, as a new avenue to widen the spectral absorption band in the infrared regime between 20 and 40 THz. Vertically oriented metamaterials, such as those simulated in this work, can be experimentally realized through membrane projection lithography, which allows a single unit cell to be decorated with multiple resonators by exploiting the vertical dimension. In particular, we analyzed the cases of a unit cell containing a single vertical split-ring resonator (VSRR), a single planar split-ring resonator (PSRR), and both a VSRR and PSRR to explore intra-cell coupling between resonators. We show that the additional degrees of freedom enabled by placing multiple resonators in a unit cell lead to novel ways of achieving omnidirectional super absorption. Our results provide an innovative approach for controlling and designing engineered nanostructures.
Terahertz (THz) photoconductive devices are used for generation, detection, and modulation of THz waves, and they rely on the ability to switch electrical conductivity on a subpicosecond time scale using optical pulses. However, fast and efficient conductivity switching with high contrast has been a challenge, because the majority of photoexcited charge carriers in the switch do not contribute to the photocurrent due to fast recombination. Here, we improve efficiency of electrical conductivity switching using a network of electrically connected nanoscale GaAs resonators, which form a perfectly absorbing photoconductive metasurface. We achieve perfect absorption without incorporating metallic elements, by breaking the symmetry of cubic Mie resonators. As a result, the metasurface can be switched between conductive and resistive states with extremely high contrast using an unprecedentedly low level of optical excitation. We integrate this metasurface with a THz antenna to produce an efficient photoconductive THz detector. The perfectly absorbing photoconductive metasurface opens paths for developing a wide range of efficient optoelectronic devices, where required optical and electronic properties are achieved through nanostructuring the resonator network.
We use GaAs metasurfaces with (111) crystal orientation to channel the second harmonic generation (SHG) into the zero-diffraction order that is suppressed for SHG obtained from GaAs metasurfaces with (100) orientation.
We demonstrate ultrafast tuning of Fano resonances in a broken symmetry III-V metasurface using optical pumping. The resonance is spectrally shifted by 10 nm under low pump fluences of < 100 uJ·cm-2.
Exposure to chemicals in everyday life is now more prevalent than ever. Air and water pollution can be delivery mechanisms for toxins, carcinogens, and other chemicals of interest (COI). A compact, multiplexed, chemical sensor with high responsivity and selectivity is desperately needed. We demonstrate the integration of unique Zr-based metal organic frameworks (MOFs) with a plasmonic transducer to demonstrate a nanoscale optical sensor that is both highly sensitive and selective to the presence of COI. MOFs are a product of coordination chemistry where a central ion is surrounded by a group of ligands resulting in a thin-film with nano-to micro-porosity, ultra-high surface area, and precise structural tunability. These properties make MOFs an ideal candidate for gaseous chemical sensing, however, transduction of a signal which probes changes in MOF films has been difficult. Plasmonic sensors have performed well in many sensing environments, but have had limited success detecting gaseous chemical analytes at low levels. This is due, in part, to the volume of molecules required to interact with the functionalized surface and produce a detectable shift in plasmonic resonance frequency. The fusion of a highly porous thin-film layer with an efficient plasmonic transduction platform is investigated and summarized. We will discuss the integration and characterization of the MOF/plasmonic sensor and summarize our results which show, upon exposure to COI, small changes in optical characteristics of the MOF layer are effectively transduced by observing shifts in plasmonic resonance.
We use dielectric metasurfaces made from direct bandgap semiconductors to generate high-harmonics and nonlinear mixing simultaneously, without the need of phase matching. Inclusion of broken-symmetry designs and quantum heterostructures can lead to even higher efficiencies.
Nami, Mohsen; Stricklin, Isaac E.; Davico, Kenneth M.; Mishkat-Ul-Masabih, Saadat; Rishinaramangalam, Ashwin K.; Brueck, S.R.J.; Brener, Igal B.; Feezell, Daniel F.
In this work, we demonstrate high-performance electrically injected GaN/InGaN core-shell nanowire-based LEDs grown using selective-area epitaxy and characterize their electro-optical properties. To assess the quality of the quantum wells, we measure the internal quantum efficiency (IQE) using conventional low temperature/room temperature integrated photoluminescence. The quantum wells show a peak IQE of 62%, which is among the highest reported values for nanostructure-based LEDs. Time-resolved photoluminescence (TRPL) is also used to study the carrier dynamics and response times of the LEDs. TRPL measurements yield carrier lifetimes in the range of 1-2 ns at high excitation powers. To examine the electrical performance of the LEDs, current density-voltage (J-V) and light-current density-voltage (L-J-V) characteristics are measured. We also estimate the peak external quantum efficiency (EQE) to be 8.3% from a single side of the chip with no packaging. The LEDs have a turn-on voltage of 2.9 V and low series resistance. Based on FDTD simulations, the LEDs exhibit a relatively directional far-field emission pattern in the range of pm ± 15°. This work demonstrates that it is feasible for electrically injected nanowire-based LEDs to achieve the performance levels needed for a variety of optical device applications.
A frequency mixer is a nonlinear device that combines electromagnetic waves to create waves at new frequencies. Mixers are ubiquitous components in modern radio-frequency technology and microwave signal processing. The development of versatile frequency mixers for optical frequencies remains challenging: such devices generally rely on weak nonlinear optical processes and, thus, must satisfy phase-matching conditions. Here we utilize a GaAs-based dielectric metasurface to demonstrate an optical frequency mixer that concurrently generates eleven new frequencies spanning the ultraviolet to near-infrared. The even and odd order nonlinearities of GaAs enable our observation of second-harmonic, third-harmonic, and fourth-harmonic generation, sum-frequency generation, two-photon absorption-induced photoluminescence, four-wave mixing and six-wave mixing. The simultaneous occurrence of these seven nonlinear processes is assisted by the combined effects of strong intrinsic material nonlinearities, enhanced electromagnetic fields, and relaxed phase-matching requirements. Such ultracompact optical mixers may enable a plethora of applications in biology, chemistry, sensing, communications, and quantum optics.
The ability to control the light-matter interaction with an external stimulus is a very active area of research since it creates exciting new opportunities for designing optoelectronic devices. Recently, plasmonic metasurfaces have proven to be suitable candidates for achieving a strong light-matter interaction with various types of optical transitions, including intersubband transitions (ISTs) in semiconductor quantum wells (QWs). For voltage modulation of the light-matter interaction, plasmonic metasurfaces coupled to ISTs offer unique advantages since the parameters determining the strength of the interaction can be independently engineered. In this work, we report a proof-of-concept demonstration of a new approach to voltage-tune the coupling between ISTs in QWs and a plasmonic metasurface. In contrast to previous approaches, the IST strength is here modified via control of the electron populations in QWs located in the near field of the metasurface. By turning on and off the ISTs in the semiconductor QWs, we observe a modulation of the optical response of the IST coupled metasurface due to modulation of the coupled light-matter states. Because of the electrostatic design, our device exhibits an extremely low leakage current of ∼6 pA at a maximum operating bias of +1 V and therefore very low power dissipation. Our approach provides a new direction for designing voltage-tunable metasurface-based optical modulators.
Considering the power constrained scaling of silicon complementary metal-oxide-semiconductor technology, the use of high mobility III-V compound semiconductors such as In0.53Ga0.47As in conjunction with high-κ dielectrics is becoming a promising option for future n-type metal-oxide-semiconductor field-effect-transistors. Development of low dissipation field-effect tunable III-V based photonic devices integrated with high-κ dielectrics is therefore very appealing from a technological perspective. In this work, we present an experimental realization of a monolithically integrable, field-effect-tunable, III-V hybrid metasurface operating at long-wave-infrared spectral bands. Our device relies on strong light-matter coupling between epsilon-near-zero (ENZ) modes of an ultra-thin In0.53Ga0.47As layer and the dipole resonances of a complementary plasmonic metasurface. The tuning mechanism of our device is based on field-effect modulation, where we modulate the coupling between the ENZ mode and the metasurface by modifying the carrier density in the ENZ layer using an external bias voltage. Modulating the bias voltage between ±2 V, we deplete and accumulate carriers in the ENZ layer, which result in spectrally tuning the eigenfrequency of the upper polariton branch at 13 μm by 480 nm and modulating the reflectance by 15%, all with leakage current densities less than 1 μA/cm2. Our wavelength scalable approach demonstrates the possibility of designing on-chip voltage-tunable filters compatible with III-V based focal plane arrays at mid- and long-wave-infrared wavelengths.
Brener, Igal B.; Nookala, N N.; Lee, J L.; Liu, Y L.; Palaferri, D P.; Tymchenko, M T.; Boehm, G B.; Amann, MC A.; Wolf, O W.; Klem, John F.; Alu, A A.; Belkin, M B.
Löchner, Franz J.F.; Fedotova, Anna N.; Liu, Sheng; Keeler, Gordon A.; Peake, Gregory M.; Saravi, Sina; Shcherbakov, Maxim R.; Burger, Sven; Fedyanin, Andrey A.; Brener, Igal B.; Pertsch, Thomas; Setzpfandt, Frank; Staude, Isabelle
Resonant semiconductor metasurfaces are an emerging versatile platform for nonlinear photonics. In this work, we investigate second-harmonic generation from metasurfaces consisting of two-dimensional square arrays of gallium arsenide nanocylinders as a function of the polarization of the fundamental wave. To this end, we perform nonlinear second harmonic microscopy, where the pump wavelength is tuned to the resonances of the metasurfaces. Furthermore, imaging the generated nonlinear signal in Fourier space allows us to analyze the spatial properties of the generated second harmonic. Our experiments reveal that the second harmonic is predominantly emitted into the first diffraction orders of the periodic arrangements, and that its intensity varies with the polarization angle of the fundamental wave. While this can be expected from the structure of the GaAs nonlinear tensor, the characteristics of this variation itself are found to depend on the pump wavelength. Interestingly, we show that the metasurface can reverse the polarization dependence of the second harmonic with respect to an unstructured GaAs wafer. These general observations are confirmed by numerical simulations using a simplified model for the metasurface. Our results provide valuable input for the development of metasurface-based classical and quantum light sources based on parametric processes.
All-dielectric metasurfaces, two-dimensional arrays of subwavelength low loss dielectric inclusions, can be used not only to control the amplitude and phase of optical beams, but also to generate new wavelengths through enhanced nonlinear optical processes that are free from some of the constraints dictated by the use of bulk materials. Recently, high quality factor (Q) resonances in these metasurfaces have been revealed and utilized for applications such as sensing and lasing. The origin of these resonances stems from the interference of two nanoresonator modes with vastly different Q. Here we show that nonlinear optical processes can be further enhanced by utilizing these high-Q resonances in broken symmetry all-dielectric metasurfaces. We study second harmonic generation from broken symmetry metasurfaces made from III-V semiconductors and observe nontrivial spectral shaping of second-harmonic and multifold efficiency enhancement induced by high field localization and enhancement inside the nanoresonators.
Metamaterials provide a means to tailor the spectral response of a surface. Given the periodic nature of the metamaterial, proper design of the unit cell requires intimate knowledge of the parameter space for each design variable. We present a detailed study of the parameter space surrounding vertical split-ring resonators and planar split-ring resonators, and demonstrate widening of the perfect absorption bandwidth based on the understanding of its parameter space.
We use broken symmetry III-V semiconductor Fano metasurfaces to substantially improve the efficiency of second-harmonic generation (SHG) in the near infrared, compared to SHG obtained from metasurfaces created using symmetrical Mie resonators.
In this work, we experimentally demonstrate simultaneous occurrence of second-,third-, fourth-harmonic generation, sum-frequency generation, four-wave mixing and six-wave mixing processes in III-V semiconductor metasurfaces with spectra spanning from the UV to the near-IR.
We demonstrate active tuning of high-Q dielectric metasurfaces by embedding asymmetric silicon meta-atoms in liquid crystals, thus controlling the relative refractive index by heating. Spectral tuning of more than three resonance widths is achieved.
Shcherbakov, Maxim R.; Liu, Sheng L.; Zubyuk, Varvara V.; Vaskin, Aleksandr; Vabishchevich, Polina P.; Keeler, Gordon A.; Pertsch, Thomas; Dolgova, Tatyana V.; Staude, Isabelle; Brener, Igal B.; Fedyanin, Andrey A.
Optical metasurfaces are regular quasi-planar nanopatterns that can apply diverse spatial and spectral transformations to light waves. However, metasurfaces are no longer adjustable after fabrication, and a critical challenge is to realise a technique of tuning their optical properties that is both fast and efficient. We experimentally realise an ultrafast tunable metasurface consisting of subwavelength gallium arsenide nanoparticles supporting Mie-type resonances in the near infrared. Using transient reflectance spectroscopy, we demonstrate a picosecond-scale absolute reflectance modulation of up to 0.35 at the magnetic dipole resonance of the metasurfaces and a spectral shift of the resonance by 30 nm, both achieved at unprecedentedly low pump fluences of less than 400 μJ cm-2. Our findings thereby enable a versatile tool for ultrafast and efficient control of light using light.
Optical nonlinearities are intimately related to the spatial symmetry of the nonlinear media. For example, the second order susceptibility vanishes for centrosymmetric materials under the dipole approximation. The latter concept has been naturally extended to the metamaterials' realm, sometimes leading to the (erroneous) hypothesis that second harmonic (SH) generation is negligible in highly symmetric meta-atoms. In this work we aim to show that such symmetric meta-atoms can radiate SH light efficiently. In particular, we investigate in-plane centrosymmetric meta-atom designs where the approximation for meta-atoms breaks down. In a periodic array this building block allows us to control the directionality of the SH radiation. We conclude by showing that the use of symmetry considerations alone allows for the manipulation of the nonlinear multipolar response of a meta-atom, resulting in e.g. dipolar, quadrupolar, or multipolar emission on demand. This is because the size of the meta-atom is comparable with the free-space wavelength, thus invalidating the dipolar approximation for meta-atoms.
Karl, Nicholas; Heimbeck, Martin S.; Everitt, Henry O.; Chen, Hou T.; Taylor, Antoinette J.; Brener, Igal B.; Benz, Alexander; Reno, J.L.; Mendis, Rajind; Mittleman, Daniel M.
Switchable metasurfaces fabricated on a doped epi-layer have become an important platform for developing techniques to control terahertz (THz) radiation, as a DC bias can modulate the transmission characteristics of the metasurface. To model and understand this performance in new device configurations accurately, a quantitative understanding of the bias-dependent surface characteristics is required. We perform THz variable angle spectroscopic ellipsometry on a switchable metasurface as a function of DC bias. By comparing these data with numerical simulations, we extract a model for the response of the metasurface at any bias value. Using this model, we predict a giant bias-induced phase modulation in a guided wave configuration. These predictions are in qualitative agreement with our measurements, offering a route to efficient modulation of THz signals.
We experimentally demonstrate resonantly enhanced nonlinear optical processes such as 2nd-, 3rd-, and 4th-harmonic generations, sum-frequency generation, four-wave mixing processes, etc., in the visible and near-IR using GaAs dielectric metasurfaces.
We present a study of an electrically modulated nonlinear metamaterial consisting of an array of split-ring resonators fabricated on n-type gallium arsenide. The resonant metamaterial nonlinearity appears as an intensity-dependent transmission minimum at terahertz frequencies and arises from the interaction between local electric fields in the split-ring resonator (SRR) capacitive gaps and charge carriers in the n-type substrate. We investigate the active tuning range of the metamaterial device as the incident terahertz field intensity is increased and conversely the effect of an applied DC bias on the terahertz field-induced nonlinear modulation of the metamaterial response. Applying a DC bias to the metamaterial sample alters the nonlinear response and reduces the net nonlinear modulation. Similarly, increasing the incident terahertz field intensity decreases the net modulation induced by an applied DC bias. We interpret these results in terms of DC and terahertz-field-assisted carrier acceleration, scattering, and multiplication processes, highlighting the unique nature of this DC-field modulated terahertz nonlinearity.
We demonstrate the active tuning of all-dielectric metasurfaces exhibiting high-quality factor (high-Q) resonances. The active control is provided by embedding the asymmetric silicon meta-atoms with liquid crystals, which allows the relative index of refraction to be controlled through heating. It is found that high quality factor resonances (Q = 270 ± 30) can be tuned over more than three resonance widths. Our results demonstrate the feasibility of using all-dielectric metasurfaces to construct tunable narrow-band filters.
Dielectric metasurfaces that exploit the different Mie resonances of nanoscale dielectric resonators are a powerful platform for manipulating electromagnetic fields and can provide novel optical behavior. In this work, we experimentally demonstrate independent tuning of the magnetic dipole resonances relative to the electric dipole resonances of split dielectric resonators (SDRs). By increasing the split dimension, we observe a blue shift of the magnetic dipole resonance toward the electric dipole resonance. Therefore, SDRs provide the ability to directly control the interaction between the two dipole resonances within the same resonator. For example, we achieve the first Kerker condition by spectrally overlapping the electric and magnetic dipole resonances and observe significantly suppressed backward scattering. Moreover, we show that a single SDR can be used as an optical nanoantenna that provides strong unidirectional emission from an electric dipole source.
Ultrafast control of the polarization state of light may enable a plethora of applications in optics, chemistry and biology. However, conventional polarizing elements, such as polarizers and waveplates, are either static or possess only gigahertz switching speeds. Here, with the aid of high-mobility indium-doped cadmium oxide (CdO) as the gateway plasmonic material, we realize a high-quality factor Berreman-type perfect absorber at a wavelength of 2.08 μm. On sub-bandgap optical pumping, the perfect absorption resonance strongly redshifts because of the transient increase of the ensemble-averaged effective electron mass of CdO, which leads to an absolute change in the p-polarized reflectance from 1.0 to 86.3%. By combining the exceedingly high modulation depth with the polarization selectivity of the perfect absorber, we experimentally demonstrate a reflective polarizer with a polarization extinction ratio of 91 that can be switched on and off within 800 fs.
We demonstrate electrical tuning of the spectral response of a Mie-resonant dielectric metasurface consisting of silicon nanodisks embedded into liquid crystals. We use the reorientation of nematic liquid crystals in a moderate applied electric field to alter the anisotropic permittivity tensor around the metasurface. By switching a control voltage “on” and “off,” we induce a large spectral shift of the metasurface resonances, resulting in an absolute transmission modulation of up to 75%. Our experimental demonstration of voltage control of dielectric metasurfaces paves the way for new types of electrically tunable metadevices, including dynamic displays and holograms.
We report lasing from nonpolar p-i-n InGaN/GaN multi-quantum well core-shell single-nanowire lasers by optical pumping at room temperature. The nanowire lasers were fabricated using a hybrid approach consisting of a top-down two-step etch process followed by a bottom-up regrowth process, enabling precise geometrical control and high material gain and optical confinement. The modal gain spectra and the gain curves of the core-shell nanowire lasers were measured using micro-photoluminescence and analyzed using the Hakki-Paoli method. Significantly lower lasing thresholds due to high optical gain were measured compared to previously reported semipolar InGaN/GaN core-shell nanowires, despite significantly shorter cavity lengths and reduced active region volume. Mode simulations show that due to the core-shell architecture, annular-shaped modes have higher optical confinement than solid transverse modes. The results show the viability of this p-i-n nonpolar core-shell nanowire architecture, previously investigated for next-generation light-emitting diodes, as low-threshold, coherent UV-visible nanoscale light emitters, and open a route toward monolithic, integrable, electrically injected single-nanowire lasers operating at room temperature.
Terahertz (THz) double-metal plasmonic resonators enable enhanced light-matter coupling by exploiting strong field confinement. The double-metal design however restricts access to the internal fields. We propose and demonstrate a method for spatial mapping and spectroscopic analysis of the internal electromagnetic fields in double-metal plasmonic resonators. We use the concept of image charges and aperture-type scanning near-field THz time-domain microscopy to probe the fields confined within the closed resonator. The experimental method opens doors to studies of light-matter coupling in deeply sub-wavelength volumes at THz frequencies.
The efficiency of photoconductive (PC) devices, including terahertz detectors, is constrained by the bulk optical constants of PC materials. Here, we show that optical absorption in a PC layer can be modified substantially within a hybrid cavity containing nanoantennas and a Distributed Bragg Reflector. We find that a hybrid cavity, consisting of a GaAs PC layer of just 50 nm, can be used to absorb >75% of incident photons by trapping the light within the cavity. We provide an intuitive model, which describes the dependence of the optimum operation wavelength on the cavity thickness. We also find that the nanoantenna size is a critical parameter, small variations of which lead to both wavelength shifting and reduced absorption in the cavity, suggesting that impedance matching is key for achieving efficient absorption in the optically thin hybrid cavities.
We demonstrate the ultrafast formation of terahertz (THz) metasurfaces through all-optical creation of spatially modulated carrier density profiles in a deep-subwavelength GaAs film. The switch-on of the transient plasmon mode, governed by the GaAs effective electron mass and electron− phonon interactions, is revealed by structured-optical pump THz probe spectroscopy, on a time scale of 500 fs. By modulating the carrier density using different pump fluences, we observe a wide tuning of the electric dipole resonance of the transient GaAs metasurface from 0.5 THz to 1.7 THz. Furthermore, we numerically demonstrate that the metasurface presented here can be generalized to more complex architectures for realizing functionalities such as perfect absorption, leading to a 30 dB modulation depth. The platform also provides a pathway to achieve ultrafast manipulation of infrared beams in the linear and, potentially, nonlinear regime.
Second order nonlinearity vanishes for centrosymmetric materials in the dipole approximation. For metamaterial this means second-harmonic-generation is negligible in highly symmetric meta-atoms. We show a new type of meta-atom in which the dipolar approximation breaks down.
We present all-dielectric 2D and 3D metamaterials that are monolithically fabricated from III-V semiconductor nanostructures. The active/gain and high optical nonlinearity properties of the metamaterials can lead to new classes of active devices.
We experimentally observe large enhancement of second-harmonic generation (SHG) from GaAs metasurfaces. The SHG polarization when excited at the electric and magnetic dipole resonances is orthogonal and can be attributed to different nonlinear generation mechanisms.
Metamaterial dielectric resonators represent a promising path toward low-loss metamaterials at optical frequencies. In this paper we utilize perturbations of high symmetry resonator geometries, such as cubes, either to overlap the electric and magnetic dipole resonances, thereby enabling directional scattering and Huygens' metasurfaces, or to induce couplings between the otherwise orthogonal resonator modes to achieve high-quality factor Fano resonances. Our results are fully scalable across any frequency bands where high-permittivity dielectric materials are available, including microwave, THz, and infrared frequencies.
Narrow-bandgap semiconductors such as alloys of InAsAlSb and their heterostructures are considered promising candidates for next generation infrared photodetectors and devices. The prospect of actively tuning the spectral responsivity of these detectors at the pixel level is very appealing. In principle, this could be achieved with a tunable metasurface fabricated monolithically on the detector pixel. Here, we present first steps towards that goal using a complementary metasurface strongly coupled to an epsilon-near-zero (ENZ) mode operating in the long-wave region of the infrared spectrum. We fabricate such a coupled system using the same epitaxial layers used for infrared pixels in a focal plane array and demonstrate the existence of ENZ modes in high mobility layers of InAsSb. We confirm that the coupling strength between the ENZ mode and the metasurface depends on the ENZ layer thickness and demonstrate a transmission modulation on the order of 25%. We further show numerically the expected tunable spectral behavior of such coupled system under reverse and forward bias, which could be used in future electrically tunable detectors.
Nonlinear optical phenomena in nanostructured materials have been challenging our perceptions of nonlinear optical processes that have been explored since the invention of lasers. For example, the ability to control optical field confinement, enhancement, and scattering almost independently allows nonlinear frequency conversion efficiencies to be enhanced by many orders of magnitude compared to bulk materials. Also, the subwavelength length scale renders phase matching issues irrelevant. Compared with plasmonic nanostructures, dielectric resonator metamaterials show great promise for enhanced nonlinear optical processes due to their larger mode volumes. Here, we present, for the first time, resonantly enhanced second-harmonic generation (SHG) using gallium arsenide (GaAs) based dielectric metasurfaces. Using arrays of cylindrical resonators we observe SHG enhancement factors as large as 104 relative to unpatterned GaAs. At the magnetic dipole resonance, we measure an absolute nonlinear conversion efficiency of ∼2 × 10-5 with ∼3.4 GW/cm2 pump intensity. The polarization properties of the SHG reveal that both bulk and surface nonlinearities play important roles in the observed nonlinear process.
Monocrystalline titanium dioxide (TiO2) micro-spheres support two orthogonal magnetic dipole modes at terahertz (THz) frequencies due to strong dielectric anisotropy. For the first time, we experimentally detected the splitting of the first Mie mode in spheres of radii (Formula presented.) m through near-field time-domain THz spectroscopy. By fitting the Fano lineshape model to the experimentally obtained spectra of the electric field detected by the sub-wavelength aperture probe, we found that the magnetic dipole resonances in TiO2 spheres have narrow linewidths of only tens of gigahertz. Anisotropic TiO2 micro-resonators can be used to enhance the interplay of magnetic and electric dipole resonances in the emerging THz all-dielectric metamaterial technology. (Figure presented.) .
IEEE Transactions on Terahertz Science and Technology
Mitrofanov, Oleg; Khromova, Irina; Siday, Thomas; Thompson, Robert J.; Ponomarev, Andrey N.; Brener, Igal B.; Reno, J.L.
We present the temporal evolution of the terahertz (THz) field leading to the excitation of plasmonic resonances in carbon microfibers. The field evolution is mapped in space and time for the 3/2 wavelength resonance using a subwavelength aperture THz near-field probe with an embedded THz photoconductive detector. The excitation of surface waves at the fiber tips leads to the formation of a standing wave along the fiber. Local THz time-domain spectroscopy at one of the standing wave crests shows a clear third-order resonance peak at 1.65 THz, well described by the Lorentz model. This application of the subwavelength aperture THz near-field microscopy for mode mapping and local spectroscopy demonstrates the potential of near-field methods for studies of subwavelength plasmonic THz resonators.
Guo, Rui; Rusak, Evgenia; Staude, Isabelle; Dominguez, Jason J.; Decker, Manuel; Rockstuhl, Carsten; Brener, Igal B.; Neshev, Dragomir N.; Kivshar, Yuri S.
We study functional hybrid metasurfaces consisting of metal-dielectric nanoantennas that direct light from an incident plane wave or from localized light sources into a preferential direction. The directionality is obtained by carefully balancing the multipolar contributions to the scattering response from the constituents of the metasurface. The hybrid nanoantennas are composed of a plasmonic gold nanorod acting as a feed element and a silicon nanodisk acting as a director element. In order to experimentally realize this design, we have developed a two-step electron-beam lithography process in combination with a precision alignment step. The optical response of the fabricated sample is measured and reveals distinct signatures of coupling between the plasmonic and the dielectric nanoantenna elements that ultimately leads to unidirectional radiation of light.
We demonstrate intrinsic, linearly polarized lasing from single GaN nanowires using cross-sectional shape control. A two-step top-down fabrication approach was employed to create straight nanowires with controllable rectangular cross-sections. A clear lasing threshold of 444 kW cm-2 and a narrow spectral line width of 0.16 nm were observed under optical pumping at room temperature, indicating the onset of lasing. The polarization was along the short dimension (y-direction) of the nanowire due to the higher transverse confinement factors for y-polarized transverse modes resulting from the rectangular nanowire cross-section. The results show that cross-sectioned shape control can enable inherent control over the polarization of nanowire lasers without additional environment requirements, such as placement onto lossy substrates.
Nanoscale structuring of optical materials leads to modification of their properties and can be used for improving efficiencies of photonic devices and for enabling new functionalities. In ultrafast optoelectronic switches for generation and detection of terahertz (THz) radiation, incorporation of nanostructures allows us to overcome inherent limitations of photoconductive materials. We propose and demonstrate a nanostructured photoconductive THz detector for sampling highly localized THz fields, down to the level of λ/150. The nanostructure that consists of an array of optical nanoantennas and a distributed Bragg reflector forms a hybrid cavity, which traps optical gate pulses within the photoconductive layer. The effect of photon trapping is observed as enhanced absorption at a designed wavelength. This optically thin photoconductive THz detector allows us to detect highly confined evanescent THz fields coupled through a deeply subwavelength aperture as small as 2 μm (λ/150 at 1 THz). By monolithically integrating the THz detector with apertures ranging from 2 to 5 μm we realize higher spatial resolution and higher sensitivity in aperture-type THz near-field microscopy and THz time-domain spectroscopy.
Mitrofanov, O.; Yu, W.; Thompson, R.J.; Jiang, Y.; Greenberg, Z.J.; Palmer, J.; Brener, Igal B.; Pan, Wei P.; Berger, C.; De Heer, W.A.; Jiang, Z.
We introduce a near-field scanning probe terahertz (THz) microscopy technique for probing surface plasmon waves on graphene. Based on THz time-domain spectroscopy method, this near-field imaging approach is well suited for studying the excitation and evolution of THz plasmon waves on graphene as well as for mapping of graphene properties at THz frequencies on the sub-wavelength scale.
Subwavelength-thin metasurfaces have shown great promises for the control of optical wavefronts, thus opening new pathways for the development of efficient flat optics. In particular, Huygens’ metasurfaces based on all-dielectric resonant meta-atoms have already shown a huge potential for practical applications with their polarization insensitivity and high transmittance efficiency. Here, we experimentally demonstrate a holographic Huygens’ metasurface based on dielectric resonant meta-atoms capable of complex wavefront control at telecom wavelengths. Our metasurface produces a hologram image in the far-field with 82% transmittance efficiency and 40% imaging efficiency. Such efficient complex wavefront control shows that Huygens’ metasurfaces based on resonant dielectric meta-atoms are a big step towards practical applications of metasurfaces in wavefront design related technologies, including computer-generated holograms, ultra-thin optics, security and data storage devices.
2015 9th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics, METAMATERIALS 2015
Khromova, I.; Mitrofanov, O.; Navarro-Cia, M.; Liberal, I.; Brener, Igal B.; Reno, J.; Melnikov, L.; Ponomarev, A.
Microsized carbon fibres exhibit strong resonant absorption at terahertz frequencies. Using near-field terahertz time-domain spectroscopy, we probe their conductivity by analysing the degree of field enhancement produced by plasmonic resonances. We demonstrate, theoretically and experimentally, the potential usability of carbon microfibres as terahertz absorbers with engineerable response.
Sandia National Laboratories will provide technical assistance, within time and budget, to Requester on testing and analyzing a microneedle-based electrolyte sensing platform. Hollow microneedles will be fabricated at Sandia and integrated with a fluidic chip using plastic laminate prototyping technology available at Sandia. In connection with commercial ion selective electrodes the sensing platform will be tested for detection of electrolytes (sodium and/or potassium) within physiological relevant concent ration ranges.
Epsilon-near-zero (ENZ) modes arising from condensed-matter excitations such as phonons and plasmons are a new path for tailoring light-matter interactions at the nanoscale. Complex spectral shaping can be achieved by creating such modes in nanoscale semiconductor layers and controlling their interaction with multiple, distinct, dipole resonant systems. Examples of this behavior are presented at midinfrared frequencies for ENZ modes that are strongly coupled to metamaterial resonators and simultaneously strongly coupled to semiconductor phonons or quantum-well intersubband transitions (ISTs), resulting in double- and triple-polariton branches in transmission spectra. For the double-polariton branch case, we find that the best strategy to maximize the Rabi splitting is to use a combination of a doped layer supporting an ENZ feature and a layer supporting ISTs, with overlapping ENZ and IST frequencies. This design flexibility renders this platform attractive for low-voltage tunable filters, light-emitting diodes, and efficient nonlinear composite materials.
We use planar metamaterial resonators to enhance by more than two orders of magnitude the near infrared second harmonic generation obtained from intersubband transitions in III-Nitride heterostructures. The improvement arises from two factors: employing an asymmetric double quantum well design and aligning the resonators' cross-polarized resonances with the intersubband transition energies. The resulting nonlinear metamaterial operates at wavelengths where single photon detection is available, and represents a different class of sources for quantum photonics related phenomena.
QD-solids comprising self-assembled semiconductor nanocrystals such as CdSe are currently under investigation for use in a wide array of applications including light emitting diodes, solar cells, field effect transistors, photodetectors, and biosensors. The goal of this LDRD project was develop a fundamental understanding of the relationship between nanoparticle interactions and the different regimes of charge and energy transport in semiconductor quantum dot (QD) solids. Interparticle spacing was tuned through the application of hydrostatic pressure in a diamond anvil cell, and the impact on interparticle interactions was probed using x-ray scattering and a variety of static and transient optical spectroscopies. During the course of this LDRD, we discovered a new, previously unknown, route to synthesize semiconductor quantum wires using high pressure sintering of self-assembled quantum dot crystals. We believe that this new, pressure driven synthesis approach holds great potential as a new tool for nanomaterials synthesis and engineering.
There is strong interest in minimizing the volume of lasers to enable ultracompact, low-power, coherent light sources. Nanowires represent an ideal candidate for such nanolasers as stand-alone optical cavities and gain media, and optically pumped nanowire lasing has been demonstrated in several semiconductor systems. Electrically injected nanowire lasers are needed to realize actual working devices but have been elusive due to limitations of current methods to address the requirement for nanowire device heterostructures with high material quality, controlled doping and geometry, low optical loss, and efficient carrier injection. In this project we proposed to demonstrate electrically injected single nanowire lasers emitting in the important UV to visible wavelengths. Our approach to simultaneously address these challenges is based on high quality III-nitride nanowire device heterostructures with precisely controlled geometries and strong gain and mode confinement to minimize lasing thresholds, enabled by a unique top-down nanowire fabrication technique.
We experimentally demonstrate a functional silicon metadevice at telecom wavelengths that can efficiently control the wavefront of optical beams by imprinting a spatially varying transmittance phase independent of the polarization of the incident beam. Near-unity transmittance efficiency and close to 0-2 phase coverage are enabled by utilizing the localized electric and magnetic Mie-type resonances of low-loss silicon nanoparticles tailored to behave as electromagnetically dual-symmetric scatterers. We apply this concept to realize a metadevice that converts a Gaussian beam into a vortex beam. The required spatial distribution of transmittance phases is achieved by a variation of the lattice spacing as a single geometric control parameter.
In this study, we observe dipole resonances in thin conductive carbon micro-fibers by detecting an enhanced electric field in the near-field of a single fiber at terahertz (THz) frequencies. Time-domain analysis of the electric field shows that each fiber sustains resonant current oscillations at the frequency defined by the fiber's length. Strong dependence of the observed resonance frequency and degree of field enhancement on the fibers' conductive properties enable direct non-contact probing of the THz conductivity in single carbon micro-fibers. We find the conductivity of the fibers to be within the range of 1– 5∙104 S/m. This approach is suitable for experimental characterization of individual doped semiconductor resonators for THz metamaterials and devices.
Coherent superposition of light from subwavelength sources is an attractive prospect for the manipulation of the direction, shape and polarization of optical beams. This phenomenon constitutes the basis of phased arrays, commonly used at microwave and radio frequencies. Here we propose a new concept for phased-array sources at infrared frequencies based on metamaterial nanocavities coupled to a highly nonlinear semiconductor heterostructure. Optical pumping of the nanocavity induces a localized, phase-locked, nonlinear resonant polarization that acts as a source feed for a higher-order resonance of the nanocavity. Varying the nanocavity design enables the production of beams with arbitrary shape and polarization. As an example, we demonstrate two second harmonic phased-array sources that perform two optical functions at the second harmonic wavelength (∼5μm): a beam splitter and a polarizing beam splitter. Proper design of the nanocavity and nonlinear heterostructure will enable such phased arrays to span most of the infrared spectrum.
We report continuous, dynamic, reversible, and widely tunable lasing from 367 to 337 nm from single GaN nanowires (NWs) by applying hydrostatic pressure up to ∼7 GPa. The GaN NW lasers, with heights of 4-5 μm and diameters ∼140 nm, are fabricated using a lithographically defined two-step top-down technique. The wavelength tuning is caused by an increasing Γ direct bandgap of GaN with increasing pressure and is precisely controllable to subnanometer resolution. The observed pressure coefficients of the NWs are ∼40% larger compared with GaN microstructures fabricated from the same material or from reported bulk GaN values, revealing a nanoscale-related effect that significantly enhances the tuning range using this approach. This approach can be generally applied to other semiconductor NW lasers to potentially achieve full spectral coverage from the UV to IR.
Metallic nanocavities with deep subwavelength mode volumes can lead to dramatic changes in the behavior of emitters placed in their vicinity. This collocation and interaction often leads to strong coupling. Here, we present for the first time experimental evidence that the Rabi splitting is directly proportional to the electrostatic capacitance associated with the metallic nanocavity. The system analyzed consists of different metamaterial geometries with the same resonance wavelength coupled to intersubband transitions in quantum wells.
Lasing is demonstrated from gallium nitride nanotubes fabricated using a two-step top-down technique. By optically pumping, we observed characteristics of lasing: a clear threshold, a narrow spectral, and guided emission from the nanotubes. In addition, annular lasing emission from the GaN nanotube is also observed, indicating that cross-sectional shape control can be employed to manipulate the properties of nanolasers. The nanotube lasers could be of interest for optical nanofluidic applications or application benefitting from a hollow beam shape.
We present an electrodynamic model of strongly coupled metamaterial/intersubband-transition systems that can be used to predict and maximize Rabi splittings. This model can also be used to optimize metamaterial structures that enhance second-order nonlinear processes.
Brener, Igal B.; Mitrofanov, Oleg M.; Mitrofanov, Oleg M.; Dominec, Filip D.; Ku?el, Petr K.; Chung, U-Chan C.; Elissalde, Cathy E.; Maglione, Mario M.