Publications

Results 1–25 of 60
Skip to search filters

Near-Field Imaging of Shallow Chemical Detonations in Granite using Change Detection Methods of Borehole Seismic Data

Schwering, Paul C.; Hoots, Charles R.; Knox, Hunter A.; Abbott, Robert A.; Preston, Leiph A.

As part of the Source Physics Experiment (SPE) Phase I shallow chemical detonation series, multiple surface and borehole active-source seismic campaigns were executed to perform high- resolution imaging of seismic velocity changes in the granitic substrate. Cross-correlation data processing methods were implemented to efficiently and robustly perform semi-automated change detection of first-arrival times between campaigns. The change detection algorithm updates the arrival times, and consequently the velocity model, of each campaign. The resulting tomographic imagery reveals the evolution of the subsurface velocity structure as the detonations progressed. ACKNOWLEDGEMENTS The authors thank Dan Herold, Bob White, Kale Mc Lin, Ryan Emmit, Maggie Townsend, Curtis Obi, Fred Helsel, Rebekah Lee, Liam Toney, Matt Geuss, and Josh Feldman for their direct and invaluable contributions to this work. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government. Note that a more detailed manuscript for this work is being prepared for publication in the Bulletin of the Seismological Society of America (BSSA).

More Details

Dynamic tuning of seismic signal detector trigger levels for local networks

Bulletin of the Seismological Society of America

Draelos, Timothy J.; Peterson, Matthew G.; Knox, Hunter A.; Lawry, Benjamin J.; Phillips-Alonge, Kristin E.; Ziegler, Abra E.; Chael, Eric P.; Young, Christopher J.; Faust, Aleksandra

The quality of automatic signal detections from sensor networks depends on individual detector trigger levels (TLs) from each sensor. The largely manual process of identifying effective TLs is painstaking and does not guarantee optimal configuration settings, yet achieving superior automatic detection of signals and ultimately, events, is closely related to these parameters. We present a Dynamic Detector Tuning (DDT) system that automatically adjusts effective TL settings for signal detectors to the current state of the environment by leveraging cooperation within a local neighborhood of network sensors. After a stabilization period, the DDT algorithm can adapt in near-real time to changing conditions and automatically tune a signal detector to identify (detect) signals from only events of interest. Our current work focuses on reducing false signal detections early in the seismic signal processing pipeline, which leads to fewer false events and has a significant impact on reducing analyst time and effort. This system provides an important new method to automatically tune detector TLs for a network of sensors and is applicable to both existing sensor performance boosting and new sensor deployment. With ground truth on detections from a local neighborhood of seismic sensors within a network monitoring the Mount Erebus volcano in Antarctica, we show that DDT reduces the number of false detections by 18% and the number of missed detections by 11% when compared with optimal fixed TLs for all sensors.

More Details

Improved moving window cross-spectral analysis for resolving large temporal seismic velocity changes in permafrost

Geophysical Research Letters

James, S.R.; Knox, Hunter A.; Abbott, Robert A.; Screaton, E.J.

Cross correlations of seismic noise can potentially record large changes in subsurface velocity due to permafrost dynamics and be valuable for long-term Arctic monitoring. We applied seismic interferometry, using moving window cross-spectral analysis (MWCS), to 2 years of ambient noise data recorded in central Alaska to investigate whether seismic noise could be used to quantify relative velocity changes due to seasonal active-layer dynamics. The large velocity changes (>75%) between frozen and thawed soil caused prevalent cycle-skipping which made the method unusable in this setting. We developed an improved MWCS procedure which uses a moving reference to measure daily velocity variations that are then accumulated to recover the full seasonal change. This approach reduced cycle-skipping and recovered a seasonal trend that corresponded well with the timing of active-layer freeze and thaw. This improvement opens the possibility of measuring large velocity changes by using MWCS and permafrost monitoring by using ambient noise.

More Details

Imaging Fracture Networks Using Joint Seismic and Electrical Change Detection Techniques - Final Report

Knox, Hunter A.; Ajo-Franklin, Jonathan B.; Johnson, Timothy J.; Morris, Joseph P.; Grubelich, Mark C.; James, Stephanie J.; Rinehart, Alex R.; Preston, Leiph A.; Vermeul, Vince V.; Strickland, Chris S.; Knox, James M.; King, Dennis K.; Ulrich, Craig U.

During the initial phase of this SubTER project, we conducted a series of high resolution seis- mic imaging campaigns designed to characterize induced fractures. Fractures were emplaced using a novel explosive source, designed at Sandia National Laboratories, that limits damage to the borehole. This work provided evidence that fracture locations could be imaged at inch scales using high-frequency seismic tomography but left many fracture properties (i.e. per- meability) unresolved. We present here the results of the second phase of the project, where we developed and demonstrated emerging seismic and electrical geophysical imaging tech- nologies that characterize 1) the 3D extent and distribution of fractures stimulated from the explosive source, 2) 3D fluid transport within the stimulated fracture network through use of a contrasting tracer, and 3) fracture attributes through advanced data analysis. Focus was placed upon advancing these technologies toward near real-time acquisition and processing in order to help provide the feedback mechanism necessary to understand and control frac- ture stimulation and fluid flow. Results from this study include a comprehensive set of 4D crosshole seismic and electrical data that take advantage of change detection methodologies allowing for perturbations associated with the fracture emplacement and particulate tracer to be isolated. During the testing the team also demonstrated near real-time 4D electri- cal resistivity tomography imaging and 4D seismic tomography using the CASSM approach with a temporal resolution approaching 1 minute. All of the data collected were used to develop methods of estimating fracture attributes from seismic data, develop methods of as- similating disparate and transient data sets to improve fracture network imaging resolution, and advance capabilities for near real-time inversion of cross-hole tomographic data. These results are illustrated here. Advancements in these areas are relevant to all situations where fracture emplacement is used for reservoir stimulation (e.g. Enhanced Geothermal Systems (EGS) and tight shale gases).

More Details

Fracture and flow designs for the collab/SIGMA-V project

Transactions - Geothermal Resources Council

Knox, Hunter A.; Fu, P.; Morris, J.P.; Guglielmi, Y.; Vermeul, V.R.; Ajo-Franklin, J.; Strickland, C.E.; Johnson, Timothy; Herrick, Courtney G.; Lee, Moo Y.; Bauer, S.J.; Baumgartner, T.; Blankenship, D.; Bonneville, A.; Boyd, L.; Brown, S.T.; Burghardt, J.A.; Carroll, S.A.; Chen, T.; Condon, C.; Cook, P.J.; Dobson, P.F.; Doe, T.; Doughty, C.A.; Elsworth, D.; Frash, L.P.; Frone, Z.; Ghassemi, A.; Gudmundsdottir, H.; Guthrie, G.; Haimson, B.; Heise, J.; Horn, M.; Horne, R.N.; Hu, M.; Huang, H.; Huang, L.; Johnson, T.C.; Johnston, B.; Karra, S.; Kim, K.; King, D.K.; Kneafsey, T.; Kumar, D.; Li, K.; Maceira, M.; Makedonska, N.; Marone, C.; Mattson, E.; McClure, M.W.; McLennan, J.; McLing, T.; Mellors, R.J.; Metcalfe, E.; Miskimins, J.; Nakagawa, S.; Neupane, G.; Newman, G.; Nieto, A.; Oldenburg, C.M.; Pawar, R.; Petrov, P.; Pietzyk, B.; Podgorney, R.; Polsky, Y.; Porse, S.; Roggenthen, B.; Rutqvist, J.; Santos-Villalobos, H.; Schwering, P.; Sesetty, V.; Singh, A.; Smith, M.M.; Snyder, N.; Sone, H.; Sonnenthal, E.L.; Spycher, N.; Su, J.; Suzuki, A.; Ulrich, C.; Valladao, C.A.; Vandermeer, W.; Vardiman, D.; Wagoner, J.L.; Wang, H.F.; Weers, J.; White, J.; White, M.D.; Winterfeld, P.; Wu, Y.S.; Wu, Y.; Zhang, Y.; Zhang, Y.Q.; Zhou, J.; Zhou, Q.; Zoback, M.D.

The first experiment of the Enhanced Geothermal Systems (EGS) Collab (a.k.a Stimulation Investigations for Geothermal Modeling Analysis and Validation (SIGMA-V)) project is designed to comprehensively monitor a series of hydraulic fracture stimulations and subsequent flow tests. This experiment is planned for the 4850 Level in the Sanford Underground Research Facility (SURF), located at the former Homestake Gold Mine, in Lead, South Dakota. The target host rock for these stimulations and flow tests is a phyllite schist known as the Poorman formation. This paper discusses at a high level the engineering design for the stimulation and fracture monitoring system, the considerations for the test bed construction, and the preliminary stimulation modeling. Furthermore, this paper will highlight the intricate ways that predictive modeling can be used for testbed and stimulation design. This project is funded by the United States Department of Energy, Geothermal Technologies Office (GTO).

More Details
Results 1–25 of 60
Results 1–25 of 60