Publications

4 Results
Skip to search filters

Seascape Interface Control Document

Moore, Emily R.; Pitts, Todd A.; Marchetto, William M.; Qiu, Henry Q.; Ross, Leon C.; Danford, Forest L.; Pitts, Christopher W.

This paper serves as the Interface Control Document (ICD) for the Seascape automated test harness developed at Sandia National Laboratories. The primary purposes of the Seascape system are: (1) provide a place for accruing large, curated, labeled data sets useful for developing and evaluating detection and classification algorithms (including, but not limited to, supervised machine learning applications) (2) provide an automated structure for specifying, running and generating reports on algorithm performance. Seascape uses GitLab, Nexus, Solr, and Banana, open source software, together with code written in the Python language, to automatically provision and configure computational nodes, queue up jobs to accomplish algorithms test runs against the stored data sets, gather the results and generate reports which are then stored in the Nexus artifact server.

More Details

Machine Learning for Correlated Intelligence. LDRD SAND Report

Moore, Emily R.; Proudfoot, Oliver S.; Qiu, Henry Q.; Ganter, Tyler G.; Lemon, Brandon L.; Pitts, Todd A.; Moon, Todd K.

The Machine Learning for Correlated Intelligence Laboratory Directed Research & Development (LDRD) Project explored competing a variety of machine learning (ML) classification techniques against a known, open source dataset through the use of a rapid and automated algorithm research & development (RD) infrastructure. This approach relied heavily on creating an infrastructure in which to provide a pipeline for automatic target recognition (ATR) ML algorithm competition. Results are presented for nine ML classifiers against a primary dataset using the pipeline infrastructure developed for this project. New approaches to feature set extraction are presented and discussed as well.

More Details

Seascape Interface Control Document (V. 2)

Moore, Emily R.; Pitts, Todd A.; Marchetto, William M.; Qiu, Henry Q.; Ross, Leon C.; Danford, Forest L.; Pitts, Christopher W.

This paper serves as the Interface Control Document (ICD) for the Seascape automated test harness developed at Sandia National Laboratories. The primary purposes of the Seascape system are: (1) provide a place for accruing large, curated, labeled data sets useful for developing and evaluating detection and classification algorithms (including, but not limited to, supervised machine learning applications) (2) provide an automated structure for specifying, running and generating reports on algorithm performance. Seascape uses GitLab, Nexus, Solr, and Banana, open source codes, together with code written in the Python language, to automatically provision and configure computational nodes, queue up jobs to accomplish algorithms test runs against the stored data sets, gather the results and generate reports which are then stored in the Nexus artifact server.

More Details

Seascape Interface Control Document (V.1)

Moore, Emily R.; Pitts, Todd A.; Marchetto, William M.; Qiu, Henry Q.; Ross, Leon C.; Danford, Forest L.; Pitts, Christopher W.

This paper serves as the Interface Control Document (ICD) for the Seascape automated test harness developed at Sandia National Laboratories. The primary purposes of the Seascape system are: (1) provide a place for accruing large, curated, labeled data sets useful for developing and evaluating detection and classification algorithms (including, but not limited to, supervised machine learning applications) (2) provide an automated structure for specifying, running and generating reports on algorithm performance. Seascape uses GitLab, Nexus, Solr, and Banana, open source codes, together with code written in the Python language, to automatically provision and configure computational nodes, queue up jobs to accomplish algorithms test runs against the stored data sets, gather the results and generate reports which are then stored in the Nexus artifact server.

More Details
4 Results
4 Results