Gas Evolution from Mixed-AcidFlow Batteries
Abstract not provided.
Abstract not provided.
Abstract not provided.
Dalton Transactions
Non-aqueous redox flow batteries (RFBs) offer the possibility of higher voltage and a wider working temperature range than their aqueous counterpart. Here, we optimize the established 2.26 V Fe(bpy)3(BF4)2/Ni(bpy)3(BF4)2 asymmetric RFB to lessen capacity fade and improve energy efficiency over 20 cycles. We also prepared a family of substituted Fe(bpyR)3(BF4)2 complexes (R = -CF3, -CO2Me, -Br, -H, -tBu, -Me, -OMe, -NH2) to potentially achieve a higher voltage RFB by systematically tuning the redox potential of Fe(bpyR)3(BF4)2, from 0.94 V vs. Ag/AgCl for R = OMe to 1.65 V vs. Ag/AgCl for R = CF3 (ΔV = 0.7 V). A series of electronically diverse symmetric and asymmetric RFBs were compared and contrasted to study electroactive species stability and efficiency, in which the unsubstituted Fe(bpy)3(BF4)2 exhibited the highest stability as a catholyte in both symmetric and asymmetric cells with voltage and coulombic efficiencies of 94.0% and 96.5%, and 90.7% and 80.7%, respectively.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Chemical Communications
Negatively substituted trimethylenecyclopropane dianions, a subclass of hexasubstituted [3]radialenes, are candidates for use as active species in redox flow batteries (RFBs) due to their stability in water, reversible electrochemistry, and tailorable synthesis. Hexacyano[3]radialene disodium is investigated as a pH 7 aqueous organic catholyte. The dianion and radical anion are stable in air and aqueous solutions at neutral pH. Systematic introduction of asymmetry via step-wise synthesis leads to enhanced solubility and higher capacity retention during galvanostatic cycling. An aqueous flow cell comprising a diester-tetracyano[3]radialene catholyte, sulfonated-methyl viologen as the anolyte, and a cation exchange membrane provides an operating Vcell = 0.9 V, 99.609% coulombic efficiency, and minimum capacity fade over 50 cycles.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Electrochemical Energy Conversion and Storage
In this paper, we study, analyze, and validate some important zero-dimensional physics-based models for vanadium redox batch cell (VRBC) systems and formulate an adequate physics-based model that can predict the battery performance accurately. In the model formulation process, a systems approach to multiple parameters estimation has been conducted using VRBC systems at low C-rates (∼C/30). In this batch cell system, the effect of ions’ crossover through the membrane is dominant, and therefore, the capacity loss phenomena can be explicitly observed. Paradoxically, this means that using the batch system might be a better approach for identifying a more suitable model describing the effect of ions transport. Next, we propose an efficient systems approach, which enables to help understand the battery performance quickly by estimating all parameters of the battery system. Finally, open source codes, executable files, and experimental data are provided to enable people’s access to robust and accurate models and optimizers. In battery simulations, different models and optimizers describing the same systems produce different values of the estimated parameters. Providing an open access platform can accelerate the process to arrive at robust models and optimizers by continuous modification from the users’ side.
Journal of the Electrochemical Society
The performances of five commercial anion exchange membranes are compared in aqueous soluble organic redox flow batteries (RFBs) containing the TEMPO and methyl viologen (MV) redox pair. Capacities between RFBs with different membranes are found to vary by >50% of theoretical after 100 cycles. This capacity loss is attributed to crossover of TEMPO and MV across the membrane and is dominated by either diffusion, migration, or electroosmotic drag, depending on the membrane. Counterintuitively, the worst performing membranes display the lowest diffusion coefficients for TEMPO and MV, instead seeing high crossover fluxes due to electroosmotic drag. This trend is rationalized in terms of the ion exchange capacity and water content of these membranes. Decreasing these values in an effort to minimize diffusion of the redox-active species while the RFB rests can inadvertently exacerbate conditions for electroosmotic drag when theRFBoperates.Using fundamental membrane properties, it is demonstrated that the relative magnitude of crossover and capacity loss during RFB operation may be understood.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Power Sources
Flow batteries are an attractive technology for energy storage of grid-scale renewables. However, performance issues related to ion-exchange membrane (IEM) fouling and crossover of species have limited the success of flow batteries. In this work we propose the use of the solid-state sodium-ion conductor NaSICON as an IEM to fully eliminate active species crossover in room temperature, aqueous, neutral pH flow batteries. We measure the room temperature conductivity of NaSICON at 2.83–4.67 mS cm−1 and demonstrate stability of NaSICON in an aqueous electrolyte with conductivity values remaining near 2.5 mS cm−1 after 66 days of exposure. Charge and discharge of a full H-cell battery as well as symmetric cycling in a flow battery configuration using NaSICON as an IEM in both cases demonstrates the capability of the solid-state IEM. Extensive analysis of aged cells through electrochemical impedance spectroscopy (EIS) and UV–vis spectroscopy show no contaminant species having crossed over the NaSICON membrane after 83 days of exposure, yielding an upper limit to the permeability of NaSICON of 4 × 10−10 cm2 min−1. The demonstration of NaSICON as an IEM enables a wide new range of chemistries for application to flow batteries that would previously be impeded by species crossover and associated degradation.
ECS Transactions
Mathematical models of Redox Flow Batteries (RFBs) can be used to analyze cell performance, optimize battery operation, and control the energy storage system efficiently. Among many other models, physics-based electrochemical models are capable of predicting internal states of the battery, such as temperature, state-of-charge, and state-of-health. In the models, estimating parameters is an important step that can study, analyze, and validate the models using experimental data. A common practice is to determine these parameters either through conducting experiments or based on the information available in the literature. However, it is not easy to investigate all proper parameters for the models through this way, and there are occasions when important information, such as diffusion coefficients and rate constants of ions, has not been studied. Also, the parameters needed for modeling charge-discharge are not always available. In this paper, an efficient way to estimate parameters of physics-based redox battery models will be proposed. This paper also demonstrates that the proposed approach can study and analyze aspects of capacity loss/fade, kinetics, and transport phenomena of the RFB system.
Abstract not provided.
Advanced Sustainable Systems
We present a systematic approach for increasing the concentration of redox-active species in electrolytes for nonaqueous redox flow batteries (RFBs). Starting with an ionic liquid consisting of a metal coordination cation (MetIL), ferrocene-containing ligands and iodide anions are substituted incrementally into the structure. While chemical structures can be drawn for molecules with 10 m redox-active electrons (RAE), practical limitations such as melting point and phase stability constrain the structures to 4.2 m RAE, a 2.3× improvement over the original MetIL. Dubbed “MetILs3,” these ionic liquids possess redox activity in the cation core, ligands, and anions. Throughout all compositions, infrared spectroscopy shows the ethanolamine-based ligands primarily coordinate to the Fe2+ core via hydroxyl groups. Calorimetry conveys a profound change in thermophysical properties, not only in melting temperature but also in suppression of a cold crystallization only observed in the original MetIL. Square wave voltammetry reveals redox processes characteristic of each molecular location. Testing a laboratory-scale RFB demonstrates Coulombic efficiencies >95% and increased voltage efficiencies due to more facile redox kinetics, effectively increasing capacity 4×. Application of this strategy to other chemistries, optimizing melting point and conductivity, can yield >10 m RAE, making nonaqueous RFB a viable technology for grid scale storage.
Molecular Informatics
We seek to optimize Ionic liquids (ILs) for application to redox flow batteries. As part of this effort, we have developed a computational method for suggesting ILs with high conductivity and low viscosity. Since ILs consist of cation-anion pairs, we consider a method for treating ILs as pairs using product descriptors for QSPRs, a concept borrowed from the prediction of protein-protein interactions in bioinformatics. We demonstrate the method by predicting electrical conductivity, viscosity, and melting point on a dataset taken from the ILThermo database on June 18th, 2014. The dataset consists of 4,329 measurements taken from 165 ILs made up of 72 cations and 34 anions. We benchmark our QSPRs on the known values in the dataset then extend our predictions to screen all 2,448 possible cation-anion pairs in the dataset.
Abstract not provided.
We report a simple method to synthesize V 4+ (VO 2+ ) electrolytes as feedstock for all- vanadium redox flow batteries (RFB). By dissolving V 2 O 5 in aqueous HCl and H 2 SO 4 , subsequently adding glycerol as a reducing agent, we have demonstrated an inexpensive route for electrolyte synthesis to concentrations >2.5 M V 4+ (VO 2+ ). Electrochemical analysis and testing of laboratory scale RFB demonstrate improved thermal stability across a wider temperature range (-10-65 degC) for V 4+ (VO 2+ ) electrolytes in HCl compared to in H 2 SO 4 electrolytes.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of the Electrochemical Society
Here highly conductive, solvent-resistant anionic Diels Alder polyphenylene (DAPP) membranes were synthesized with three different ionic contents and tested in an ionic liquid-based nonaqueous redox flow battery (RFB). These membranes display 3-10× increase in conductivity in propylene carbonate compared to some commercially available (aqueous) anion exchange membranes. The membrane with an ion content of 1.5 meq/g (DAPP1.5) proved too brittle for operation in a RFB, while the membrane with an ion content of 2.5 meq/g (DAPP2.5) allowed excessive movement of solvent and poor electrochemical yields (capacity fade). Despite having lower voltage efficiencies compared to DAPP2.5, the membrane with an intermediate ion content of 2.0 meq/g (DAPP2.0) exhibited higher coulombic efficiencies (96.4% vs. 89.1%) and electrochemical yields (21.6% vs. 10.9%) after 50 cycles. Crossover of the electroactive species was the primary reason for decreased electrochemical yields. Analysis of the anolyte and catholyte revealed degradation of the electroactive species and formation of a film at the membrane-solution interface. Increases in membrane resistance were attributed to mechanical and thermal aging of the membrane; no chemical change was observed. Improvements in the ionic selectivity and ionic conductivity of the membrane will increase the electrochemical yield and voltage efficiency of future nonaqueous redox flow batteries.
Electrochimica Acta
In situ X-Ray Absorption Near Edge Spectroscopy (XANES) and Extended X-Ray Absorption Fine Structure (EXAFS) techniques are applied to a metal center ionic liquid undergoing oxidation and reduction in a three electrode spectroscopic cell. Determination of the extent of reduction under negative bias on the working electrode and the extent of oxidation are determined after pulse voltammetry to quiescence. While the ionic liquid undergoes full oxidation, it undergoes only partial reduction, likely due to transport issues on the timescale of the experiment. Nearest neighbor Fe-O distances in the fully oxidized state match well to expected values for similarly coordinated solids, but reduction does not result in an extension of the Fe-O bond length, as would be expected from comparisons to the solid phase. Instead, little change in bond length is observed. We suggest that this may be due to a more complex interaction between the monodentate ligands of the metal center anion and the surrounding charge cloud, rather than straightforward electrostatics between the metal center and the nearest neighbor grouping.
Abstract not provided.
Abstract not provided.
This report describes advances in electrolytes for lithium primary battery systems. Electrolytes were synthesized that utilize organosilane materials that include anion binding agent functionality. Numerous materials were synthesized and tested in lithium carbon monofluoride battery systems for conductivity, impedance, and capacity. Resulting electrolytes were shown to be completely non-flammable and showed promise as co-solvents for electrolyte systems, due to low dielectric strength.
Abstract not provided.
Abstract not provided.
Journal of the Electrochemical Society
Nonaqueous redox flow batteries (RFB) leverage nonaqueous solvents to enable higher operating voltages compared to their aqueous counterparts. Most commercial components for flow batteries, however, are designed for aqueous use. One critical component, the ion-selective membrane, provides ionic conductance between electrodes while preventing crossover of electroactive species. Here we evaluate the area-specific conductances and through-plane conductivities of commercially available microporous separators (Celgard 2400, 2500) and anion exchange membranes (Neosepta AFX, Neosepta AHA, Fumasep FAP-450, Fumasep FAP-PK) soaked in acetonitrile, propylene carbonate, or two imidazolium-based ionic liquids. Fumasep membranes combined with acetonitrile-based electrolyte solutions provided the highest conductance values and conductivities by far. When tested in ionic liquids, all anion exchange membranes displayed conductivities greater than those of the Celgard microporous separators, though the separators decreased thickness-enabled conductances on par with the most conductive anion exchange membranes. Ionic conductivity is not the only consideration when choosing an anion exchange membrane; testing of FAP-450 and FAP-PK membranes in a nonaqueous RFB demonstrated that the increased mechanical stability of PEEK-supported FAP-PK minimized swelling, in turn decreasing solvent mediated crossover and enabling greater electrochemical yields (40% vs. 4%) and Coulombic efficiencies (94% vs. 90%) compared to the unsupported, higher conductance FAP-450.
NSTI: Advanced Materials - TechConnect Briefs 2015
SNL has developed a series of ionic-liquid electrolytes with accompanying non- Aqueous compatible membranes and flow cell designs for improved energy density redox flow batteries targeted to support increasing demands for stationary energy storage. The new electrolytes yield a higher energy density by chemically incorporating an electro- Active transition metal element into the solvent's molecular formula. Although ionic liquids have higher viscosities than conventional non- Aqueous electrolytes, they are promising for higher energy densities due to higher metal concentrations and wider voltage windows. We have addressed high viscosity by developing new materials through careful ligand and anion selection. We have also developed tunable membranes for non- Aqueous compatibility and rapid laboratory-scale prototyping to quickly screen materials and cell designs. We are projecting a four-fold improvement in energy density over the next two years.
Electrochimica Acta
A pair of redox flow batteries containing polyoxometalates was tested as part of an ongoing program in stationary energy storage. The iron-containing dimer, (SiFe3W9(OH)3O34) 2(OH)311-, cycled between (SiFe 3W9(OH)3O34)2(OH) 311-/(SiFe3W9(OH)3O 34)2(OH)314-and (SiFe 3W9(OH)3O34)2(OH) 317-/(SiFe3W9(OH)3O 34)2(OH)314- for the positive and negative electrode, respectively. This compound demonstrated a coulombic efficiency of 83% after 20 cycles with an electrochemical yield (measured discharge capacity as a percentage of theoretical capacity) of 55%. Cyclic voltammetry on the Lindqvist ion, cis-V2W4O 194-, showed quasi-reversible vanadium electrochemistry, but tungsten reduction was mostly irreversible. In a flow cell configuration, cis-V2W4O194-had a coulombic efficiency of 45% (for a two-electron process) and an electrochemical yield of 16% after 20 cycles. The poor performance of cis-V2W 4O194-was attributed primarily to its higher charge density. Collectively, the results showed that both polyoxometalate size and charge density are both important parameters to consider in battery material performance.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Advanced Energy Materials
Abstract not provided.
Dalton Transactions
Abstract not provided.
Journal of Power Sources
A redox flow battery utilizing two, three-electron polyoxometalate redox couples (SiVV3WVI9O407–/SiVIV3WVI9O4010- and SiVIV3WVI9O4010-/SiVIV3WV3WVI6O4013-) was investigated for use in stationary storage in either aqueous or non-aqueous conditions. The aqueous battery had coulombic efficiencies greater than 95% with relatively low capacity fading over 100 cycles. Infrared studies showed there was no decomposition of the compound under these conditions. The non-aqueous analog had a higher operating voltage but at the expense of coulombic efficiency. The spontaneous formation of these clusters by self-assembly facilitates recovery of the battery after being subjected to reversed polarity. Polyoxometalates offer a new approach to stationary storage materials because they are capable of undergoing multi-electron reactions and are stable over a wide range of pH values and temperatures.
Abstract not provided.
Abstract not provided.
Journal of Electroanalytical Chemistry
Abstract not provided.
Abstract not provided.
Proposed for publication in Inorganica Chimica Acta.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in Dalton Transactions.
Abstract not provided.
Dalton Transactions
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
The CSI: Dognapping Workshop is a culmination of the more than 65 Sandian staff and intern volunteers dedication to exciting and encouraging the next generation of scientific leaders. This 2 hour workshop used a 'theatrical play' and 'hands on' activities that was fun, exciting and challenging for 3rd-5th graders while meeting science curriculum standards. In addition, new pedagogical methods were developed in order to introduce nanotechnology to the public. Survey analysis indicated that the workshop had an overall improvement and positive impact on helping the students to understand concepts from materials science and chemistry as well as increased our interaction with the K-5 community. Anecdotal analyses showed that this simple exercise will have far reaching impact with the results necessary to maintain the United States as the scientific leader in the world. This experience led to the initiation of over 100 Official Junior Scientists.
Abstract not provided.