Publications

Results 1–50 of 109
Skip to search filters

Theory of the metastable injection-bleached E3c center in GaAs

Physical Review B

Schultz, Peter A.; Hjalmarson, Harold P.

The E3 transition in irradiated GaAs observed in deep level transient spectroscopy (DLTS) was recently discovered in Laplace-DLTS to encompass three distinct components. The component designated E3c was found to be metastable, reversibly bleached under minority carrier (hole) injection, with an introduction rate dependent upon Si doping density. It is shown through first-principles modeling that the E3c must be the intimate Si-vacancy pair, best described as a Si sitting in a divacancy Sivv. The bleached metastable state is enabled by a doubly site-shifting mechanism: Upon recharging, the defect undergoes a second site shift rather returning to its original E3c-active configuration via reversing the first site shift. Identification of this defect offers insights into the short-time annealing kinetics in irradiated GaAs.

More Details

Atomic step disorder on polycrystalline surfaces leads to spatially inhomogeneous work functions

Journal of Vacuum Science and Technology A

Bussmann, Ezra B.; smith, sean w.; Scrymgeour, David S.; Brumbach, Michael T.; Lu, Ping L.; Dickens, Sara D.; Michael, Joseph R.; Ohta, Taisuke O.; Hjalmarson, Harold P.; Schultz, Peter A.; Clem, Paul G.; Hopkins, Matthew M.; Moore, Christopher M.

Structural disorder causes materials’ surface electronic properties, e.g., work function ([Formula: see text]), to vary spatially, yet it is challenging to prove exact causal relationships to underlying ensemble disorder, e.g., roughness or granularity. For polycrystalline Pt, nanoscale resolution photoemission threshold mapping reveals a spatially varying [Formula: see text] eV over a distribution of (111) vicinal grain surfaces prepared by sputter deposition and annealing. With regard to field emission and related phenomena, e.g., vacuum arc initiation, a salient feature of the [Formula: see text] distribution is that it is skewed with a long tail to values down to 5.4 eV, i.e., far below the mean, which is exponentially impactful to field emission via the Fowler–Nordheim relation. We show that the [Formula: see text] spatial variation and distribution can be explained by ensemble variations of granular tilts and surface slopes via a Smoluchowski smoothing model wherein local [Formula: see text] variations result from spatially varying densities of electric dipole moments, intrinsic to atomic steps, that locally modify [Formula: see text]. Atomic step-terrace structure is confirmed with scanning tunneling microscopy (STM) at several locations on our surfaces, and prior works showed STM evidence for atomic step dipoles at various metal surfaces. From our model, we find an atomic step edge dipole [Formula: see text] D/edge atom, which is comparable to values reported in studies that utilized other methods and materials. Our results elucidate a connection between macroscopic [Formula: see text] and the nanostructure that may contribute to the spread of reported [Formula: see text] for Pt and other surfaces and may be useful toward more complete descriptions of polycrystalline metals in the models of field emission and other related vacuum electronics phenomena, e.g., arc initiation.

More Details

First-principles calculations of metal surfaces. II. Properties of low-index platinum surfaces toward understanding electron emission

Physical Review B

Schultz, Peter A.; Hjalmarson, Harold P.; Berg, Morgann B.; Bussmann, Ezra B.; Scrymgeour, David S.; Ohta, Taisuke O.; Moore, Christopher H.

The stability of low-index platinum surfaces and their electronic properties is investigated with density functional theory, toward the goal of understanding the surface structure and electron emission, and identifying precursors to electrical breakdown, on nonideal platinum surfaces. Propensity for electron emission can be related to a local work function, which, in turn, is intimately dependent on the local surface structure. The (1×N) missing row reconstruction of the Pt(110) surface is systematically examined. The (1×3) missing row reconstruction is found to be the lowest in energy, with the (1×2) and (1×4) slightly less stable. In the limit of large (1×N) with wider (111) nanoterraces, the energy accurately approaches the asymptotic limit of the infinite Pt(111) surface. This suggests a local energetic stability of narrow (111) nanoterraces on free Pt surfaces that could be a common structural feature in the complex surface morphologies, leading to work functions consistent with those on thermally grown Pt substrates.

More Details

Experiments and Computational Theory for Electrical Breakdown in Critical Components: THz Imaging of Electronic Plasmas

Zutavern, Fred J.; Hjalmarson, Harold P.; Bigman, Verle H.; Gallegos, Richard J.

This report describes the development of ultra-short pulse laser (USPL) induced terahertz (THz) radiation to image electronic plasmas during electrical breakdown. The technique uses three pulses from two USPLs to (1) trigger the breakdown, (2) create a 2 picosecond (ps, 10 -12 s), THz pulse to illuminate the breakdown, and (3) record the THz image of the breakdown. During this three year internal research program, sub-picosecond jitter timing for the lasers, THz generation, high bandwidth (BW) diagnostics, and THz image acquisition was demonstrated. High intensity THz radiation was optically-induced in a pulse-charged gallium arsenide photoconductive switch. The radiation was collected, transported, concentrated, and co-propagated through an electro-optic crystal with an 800 nm USPL pulse whose polarization was rotated due to the spatially varying electric field of the THz image. The polarization modulated USPL pulse was then passed through a polarizer and the resulting spatially varying intensity was detected in a high resolution digital camera. Single shot images had a signal to noise of %7E3:1. Signal to noise was improved to %7E30:1 with several experimental techniques and by averaging the THz images from %7E4000 laser pulses internally and externally with the camera and the acquisition system (40 pulses per readout). THz shadows of metallic films and objects were also recorded with this system to demonstrate free-carrier absorption of the THz radiation and improve image contrast and resolution. These 2 ps THz pulses were created and resolved with 100 femtosecond (fs, 10 -15 s) long USPL pulses. Thus this technology has the capability to time-resolve extremely fast repetitive or single shot phenomena, such as those that occur during the initiation of electrical breakdown. The goal of imaging electrical breakdown was not reached during this three year project. However, plans to achieve this goal as part of a follow-on project are described in this document. Further modifications to improve the THz image contrast and resolution are proposed, and after they are made, images of photo-induced carriers in gallium arsenide and silicon will be acquired to evaluate image sensitivity versus carrier density. Finally electrical breakdown will be induced with the first USPL pulse, illuminated with THz radiation produced with the second USPL pulse and recorded with the third USPL pulse.

More Details

The susceptibility of TaOx-based memristors to high dose rate ionizing radiation and total ionizing dose

IEEE Transactions on Nuclear Science

McLain, Michael L.; Hjalmarson, Harold P.; Sheridan, Timothy J.; Mickel, Patrick R.; Hanson, Donald J.; McDonald, Joseph K.; Hughart, David R.; Marinella, Matthew J.

This paper investigates the effects of high dose rate ionizing radiation and total ionizing dose (TID) on tantalum oxide (TaOx) memristors. Transient data were obtained during the pulsed exposures for dose rates ranging from approximately 5.0 × 107rad(Si)/s to 4.7 × 108rad(Si)/s and for pulse widths ranging from 50 ns to 50 μs. The cumulative dose in these tests did not appear to impact the observed dose rate response. Static dose rate upset tests were also performed at a dose rate of ∼3.0 × 108rad(Si)/s. This is the first dose rate study on any type of memristive memory technology. In addition to assessing the tolerance of TaOx memristors to high dose rate ionizing radiation, we also evaluated their susceptibility to TID. The data indicate that it is possible for the devices to switch from a high resistance off-state to a low resistance on-state in both dose rate and TID environments. The observed radiation-induced switching is dependent on the irradiation conditions and bias configuration. Furthermore, the dose rate or ionizing dose level at which a device switches resistance states varies from device to device; the enhanced susceptibility observed in some devices is still under investigation. Numerical simulations are used to qualitatively capture the observed transient radiation response and provide insight into the physics of the induced current/voltages.

More Details

Development characterization and modeling of a TaOx ReRAM for a neuromorphic accelerator

Marinella, Matthew J.; Mickel, Patrick R.; Lohn, Andrew L.; Hughart, David R.; Bondi, Robert J.; Mamaluy, Denis M.; Hjalmarson, Harold P.; Stevens, James E.; Decker, Seth D.; Apodaca, Roger A.; Evans, Brian R.; Aimone, James B.; Rothganger, Fredrick R.; James, Conrad D.; DeBenedictis, Erik

This report discusses aspects of neuromorphic computing and how it is used to model microsystems.

More Details

LDRD project 151362 : low energy electron-photon transport

Kensek, Ronald P.; Hjalmarson, Harold P.; Magyar, Rudolph J.; Bondi, Robert J.

At sufficiently high energies, the wavelengths of electrons and photons are short enough to only interact with one atom at time, leading to the popular %E2%80%9Cindependent-atom approximation%E2%80%9D. We attempted to incorporate atomic structure in the generation of cross sections (which embody the modeled physics) to improve transport at lower energies. We document our successes and failures. This was a three-year LDRD project. The core team consisted of a radiation-transport expert, a solid-state physicist, and two DFT experts.

More Details

High-voltage atmospheric breakdown across intervening rutile dielectrics

Simpson, Sean S.; Coats, Rebecca S.; Hjalmarson, Harold P.; Jorgenson, Roy E.; Pasik, Michael F.

This report documents work conducted in FY13 on electrical discharge experiments performed to develop predictive computational models of the fundamental processes of surface breakdown in the vicinity of high-permittivity material interfaces. Further, experiments were conducted to determine if free carrier electrons could be excited into the conduction band thus lowering the effective breakdown voltage when UV photons (4.66 eV) from a high energy pulsed laser were incident on the rutile sample. This report documents the numerical approach, the experimental setup, and summarizes the data and simulations. Lastly, it describes the path forward and challenges that must be overcome in order to improve future experiments for characterizing the breakdown behavior for rutile.

More Details
Results 1–50 of 109
Results 1–50 of 109