Publications

11 Results
Skip to search filters

Automated Digital Microfluidic Sample Preparation for Next-Generation DNA Sequencing

Journal of Laboratory Automation

Kim, Hanyoup; Bartsch, Michael B.; Renzi, Ronald F.; He, Jim; Van De Vreugde, James L.; Claudnic, Mark R.; Patel, Kamlesh D.

Next-generation sequencing (NGS) technology is a promising tool for identifying and characterizing unknown pathogens, but its usefulness in time-critical biodefense and public health applications is currently limited by the lack of fast, efficient, and reliable automated DNA sample preparation methods. To address this limitation, we are developing a digital microfluidic (DMF) platform to function as a fluid distribution hub, enabling the integration of multiple subsystem modules into an automated NGS library sample preparation system. A novel capillary interface enables highly repeatable transfer of liquid between the DMF device and the external fluidic modules, allowing both continuous-flow and droplet-based sample manipulations to be performed in one integrated system. Here, we highlight the utility of the DMF hub platform and capillary interface for automating two key operations in the NGS sample preparation workflow. Using an in-line contactless conductivity detector in conjunction with the capillary interface, we demonstrate closed-loop automated fraction collection of target analytes from a continuous-flow sample stream into droplets on the DMF device. Buffer exchange and sample cleanup, the most repeated steps in NGS library preparation, are also demonstrated on the DMF platform using a magnetic bead assay and achieving an average DNA recovery efficiency of 80% ± 4.8% © 2011 Society for Laboratory Automation and Screening.

More Details

Digital microfluidic hub for automated nucleic acid sample preparation

14th International Conference on Miniaturized Systems for Chemistry and Life Sciences 2010, MicroTAS 2010

Kim, Hanyoup; Bartsch, Michael B.; Renzi, Ronald F.; Pezzola, Genevieve L.; Remillard, Erin M.; Kittlaus, Eric A.; He, Jim H.; Patel, Kamlesh D.

We have designed, fabricated, and characterized a digital microfluidic (DMF) platform to function as a central hub for interfacing multiple lab-on-a-chip sample processing modules towards automating the preparation of clinically-derived DNA samples for ultrahigh throughput sequencing (UHTS). The platform enables plug-and-play installation of a two-plate DMF device with consistent spacing, offers flexible connectivity for transferring samples between modules, and uses an intuitive programmable interface to control droplet/electrode actuations. Additionally, the hub platform uses transparent indium-tin oxide (ITO) electrodes to allow complete top and bottom optical access to the droplets on the DMF array, providing additional flexibility for various detection schemes.

More Details
11 Results
11 Results