Strategic Petroleum Reserve Cavern Leaching Monitoring CY21
Th e U.S. Strategic Petroleum Reserve (SPR) is a crude oil storage system administered by the U.S. Department of Energy. The reserve consists of 60 active storage caverns located in underground salt domes spread across four sites in Louisiana and Texas, near the Gulf of Mexico. Beginning in 2016, the SPR started executing C ongressionally mandated oil sales. The configuration of the reserve, with a total capacity of greater than 700 million barrels ( MMB ) , re quires that unsaturated water (referred to herein as ?raw? water) is injected into the storage caverns to displace oil for sales , exchanges, and drawdowns . As such, oil sales will produce cavern growth to the extent that raw water contacts the salt cavern walls and dissolves (leaches) the surrounding salt before reaching brine saturation. SPR injected a total of over 45 MMB of raw water into twenty - six caverns as part of oil sales in CY21 . Leaching effects were monitored in these caverns to understand how the sales operations may impact the long - term integrity of the caverns. While frequent sonars are the most direct means to monitor changes in cavern shape, they can be resource intensive for the number of caverns involved in sales and exchanges. An interm ediate option is to model the leaching effects and see if any concerning features develop. The leaching effects were modeled here using the Sandia Solution Mining Code , SANSMIC . The modeling results indicate that leaching - induced features do not raise co ncern for the majority of the caverns, 15 of 26. Eleven caverns, BH - 107, BH - 110, BH - 112, BH - 113, BM - 109, WH - 11, WH - 112, WH - 114, BC - 17, BC - 18, and BC - 19 have features that may grow with additional leaching and should be monitored as leaching continues in th ose caverns. Additionally, BH - 114, BM - 4, and BM - 106 were identified in previous leaching reports for recommendation of monitoring. Nine caverns had pre - and post - leach sonars that were compared with SANSMIC results. Overall, SANSMIC was able to capture the leaching well. A deviation in the SANSMIC and sonar cavern shapes was observed near the cavern floor in caverns with significant floor rise, a process not captured by SANSMIC. These results validate that SANSMIC continues to serve as a useful tool for mon itoring changes in cavern shape due to leaching effects related to sales and exchanges.