Publications

2 Results
Skip to search filters

Strategic Petroleum Reserve Cavern Leaching Monitoring CY21

Zeitler, Todd Z.; Ross, Tonya S.; Valdez, Raquel L.; Maurer, Hannah G.; Hart, David B.

Th e U.S. Strategic Petroleum Reserve (SPR) is a crude oil storage system administered by the U.S. Department of Energy. The reserve consists of 60 active storage caverns located in underground salt domes spread across four sites in Louisiana and Texas, near the Gulf of Mexico. Beginning in 2016, the SPR started executing C ongressionally mandated oil sales. The configuration of the reserve, with a total capacity of greater than 700 million barrels ( MMB ) , re quires that unsaturated water (referred to herein as ?raw? water) is injected into the storage caverns to displace oil for sales , exchanges, and drawdowns . As such, oil sales will produce cavern growth to the extent that raw water contacts the salt cavern walls and dissolves (leaches) the surrounding salt before reaching brine saturation. SPR injected a total of over 45 MMB of raw water into twenty - six caverns as part of oil sales in CY21 . Leaching effects were monitored in these caverns to understand how the sales operations may impact the long - term integrity of the caverns. While frequent sonars are the most direct means to monitor changes in cavern shape, they can be resource intensive for the number of caverns involved in sales and exchanges. An interm ediate option is to model the leaching effects and see if any concerning features develop. The leaching effects were modeled here using the Sandia Solution Mining Code , SANSMIC . The modeling results indicate that leaching - induced features do not raise co ncern for the majority of the caverns, 15 of 26. Eleven caverns, BH - 107, BH - 110, BH - 112, BH - 113, BM - 109, WH - 11, WH - 112, WH - 114, BC - 17, BC - 18, and BC - 19 have features that may grow with additional leaching and should be monitored as leaching continues in th ose caverns. Additionally, BH - 114, BM - 4, and BM - 106 were identified in previous leaching reports for recommendation of monitoring. Nine caverns had pre - and post - leach sonars that were compared with SANSMIC results. Overall, SANSMIC was able to capture the leaching well. A deviation in the SANSMIC and sonar cavern shapes was observed near the cavern floor in caverns with significant floor rise, a process not captured by SANSMIC. These results validate that SANSMIC continues to serve as a useful tool for mon itoring changes in cavern shape due to leaching effects related to sales and exchanges.

More Details

Automation of Plot Generation for Strategic Petroleum Reserve Cavern Leaching Monitoring

Valdez, Raquel L.; Maurer, Hannah G.

Monitoring cavern leaching after each calendar year of oil sales is necessary to support cavern stability efforts and long-term availability for oil drawdowns in the U.S. Strategic Petroleum Reserve. Modeling results from the SANSMIC code and recent sonars are compared to show projected changes in the cavern’s geometry due to leaching from raw-water injections. This report aims to give background on the importance of monitoring cavern leaching and provide a detailed explanation of the process used to create the leaching plots used to monitor cavern leaching. In the past, generating leaching plots for each cavern in a given leaching year was done manually, and every cavern had to be processed individually. A Python script, compatible with Earth Volumetric Studio, was created to automate most of the process. The script makes a total of 26 plots per cavern to show leaching history, axisymmetric representation of leaching, and SANSMIC modeling of future leaching. The current run time for the script is one hour, replacing 40-50 hours of the monitoring cavern leaching process.

More Details
2 Results
2 Results