Publications

12 Results
Skip to search filters

Influence of temperature and resonance-stabilization on the ortho-effect in cymene oxidation

Proceedings of the Combustion Institute

Rotavera, Brandon R.; Scheer, Adam M.; Huang, Haifeng H.; Osborn, David L.; Taatjes, Craig A.

Cymenes are monoterpene derivatives composed of a benzene ring with iso-propyl and methyl substituents, and the proximity of the two alkyl groups enables relevant analysis into the ortho-effect of polysubstituted aromatics, in which low-temperature autoignition is more facile for ortho-substitution. The initial steps of ROO-related reactions from Cl-initiated oxidation of ortho-, meta- and para-cymene were studied at low pressure (8 Torr) over the temperature range 450-750 K using multiplexed photoionization mass spectrometry (MPIMS). Ratios of cyclic ether formation (related to chain-propagation and OH formation) relative to HO2-loss (related to chain-termination) were measured to characterize the ortho-effect as a function of temperature. The main results are twofold: Cyclic ether measurements indicate significant chain-propagation below 700 K only in o-cymene oxidation; above 700 K, chain-propagation of the three cymene isomers converge.The competition between chain-propagation channels stemming from resonance- and non-resonance-stabilized initial cymene radicals changes significantly with temperature, with chain-propagation near 700 K arising predominantly from non-resonance-stabilized R radicals. Cyclic ether yields in m- and p-cymene oxidation are negligible below 650 K, indicating minimal chain-propagation. In contrast, o-cymene exhibits significant cyclic ether formation, attributed to the favorable 6- and 7-membered-ring transition states in the formation of hydroperoxyalkyl (QOOH) intermediates from peroxy radicals (ROO). The cyclic ether/HO2-loss ratio in o-cymene oxidation is defined as unity at 450 K and decreases to ∼0.10 at 700 K. The ratio converges to ∼0.10 at 700 K for the three cymene isomers, indicating an upper limit of temperature for the ortho-effect. Photoionization spectra of cyclic ether formation from o-cymene oxidation indicate a competition between both resonance- and non-resonance-stabilized initial radicals at the lower range of temperature. With increasing temperature, cyclic ether formation shifts from pathways involving resonance-stabilized initial radicals towards pathways solely from non-resonance-stabilized initial radicals because of back-dissociation of weakly bound ROO adducts.

More Details

Time-Resolved Quantitative Measurement of OH HO2 and CH2O in Fuel Oxidation Reactions by High Resolution IR Absorption Spectroscopy

Huang, Haifeng H.; Rotavera, Brandon R.; Taatjes, Craig A.

Combined with a Herriott-type multi-pass slow flow reactor, high-resolution differential direct absorption spectroscopy has been used to probe, in situ and quantitatively, hydroxyl (OH), hydroperoxy (HO 2 ) and formaldehyde (CH 2 O) molecules in fuel oxidation reactions in the reactor, with a time resolution of about 1 micro-second. While OH and CH 2 O are probed in the mid-infrared (MIR) region near 2870nm and 3574nm respectively, HO 2 can be probed in both regions: near-infrared (NIR) at 1509nm and MIR at 2870nm. Typical sensitivities are on the order of 10 10 - 10 11 molecule cm -3 for OH at 2870nm, 10 11 molecule cm -3 for HO 2 at 1509nm, and 10 11 molecule cm -3 for CH 2 O at 3574nm. Measurements of multiple important intermediates (OH and HO 2 ) and product (CH 2 O) facilitate to understand and further validate chemical mechanisms of fuel oxidation chemistry.

More Details

Directly measuring reaction kinetics of QOOH-a crucial but elusive intermediate in hydrocarbon autoignition

Physical Chemistry Chemical Physics

Zador, Judit Z.; Huang, Haifeng H.; Welz, Oliver W.; Zetterberg, Johan; Osborn, David L.; Taatjes, Craig A.

Hydrocarbon autoignition has long been an area of intense fundamental chemical interest, and is a key technological process for emerging clean and efficient combustion strategies. Carbon-centered radicals containing an -OOH group, commonly denoted QOOH radicals, are produced by isomerization of the alkylperoxy radicals that are formed in the first stages of oxidation. These QOOH radicals are among the most critical species for modeling autoignition, as their reactions with O2 are responsible for chain branching below 1000 K. Despite their importance, no QOOH radicals have ever been observed by any means, and only computational and indirect experimental evidence has been available on their reactivity. Here, we directly produce a QOOH radical, 2-hydroperoxy-2-methylprop-1-yl, and experimentally determine rate coefficients for its unimolecular decomposition and its association reaction with O 2. The results are supported by high-level theoretical kinetics calculations. Our experimental strategy opens up a new avenue to study the chemistry of QOOH radicals in isolation. © 2013 the Owner Societies.

More Details
12 Results
12 Results