Publications

Results 1–50 of 110
Skip to search filters

Carrier capture and emission by substitutional carbon impurities in GaN vertical diodes

Journal of Applied Physics

Wampler, William R.; Armstrong, Andrew A.; Vizkelethy, Gyorgy V.

A model was developed for the operation of a GaN pn junction vertical diode which includes rate equations for carrier capture and thermally activated emission by substitutional carbon impurities and carrier generation by ionizing radiation. The model was used to simulate the effect of ionizing radiation on the charge state of carbon. These simulations predict that with no applied bias, carbon is negatively charged in the n-doped layer, thereby compensating n-doping as experimentally observed in diodes grown by metal-organic chemical vapor deposition. With reverse bias, carbon remains negative in the depletion region, i.e., compensation persists in the absence of ionization but is neutralized by exposure to ionizing radiation. This increases charge density in the depletion region, decreases the depletion width, and increases the capacitance. The predicted increase in capacitance was experimentally observed using a pulsed 70 keV electron beam as the source of ionization. In additional confirming experiments, the carbon charge-state conversion was accomplished by photoionization using sub-bandgap light or by the capture of holes under forward bias.

More Details

Optical activation and detection of charge transport between individual colour centres in diamond

Nature Electronics

Lozovoi, Artur; Jayakumar, Harishankar; Daw, Damon; Vizkelethy, Gyorgy V.; Bielejec, Edward S.; Doherty, Marcus W.; Flick, Johannes; Meriles, Carlos A.

Understanding the capture of charge carriers by colour centres in semiconductors is important for the development of novel forms of sensing and quantum information processing, but experiments typically involve ensemble measurements, often impacted by defect proximity. Here we show that confocal fluorescence microscopy and magnetic resonance can be used to induce and probe charge transport between individual nitrogen-vacancy centres in diamond at room temperature. In our experiments, a ‘source’ nitrogen vacancy undergoes optically driven cycles of ionization and recombination to produce a stream of photogenerated carriers, one of which is subsequently captured by a ‘target’ nitrogen vacancy several micrometres away. We use a spin-to-charge conversion scheme to encode the spin state of the source colour centre into the charge state of the target, which allows us to set an upper bound to carrier injection from other background defects. We attribute our observations to the action of unscreened Coulomb potentials producing giant carrier capture cross-sections, orders of magnitude greater than those measured in ensembles.

More Details

Identification of localized radiation damage in power MOSFETs using EBIC imaging

Applied Physics Letters

Ashby, David; Garland, Diana; Esposito, Madeline G.; Vizkelethy, Gyorgy V.; Marinella, Matthew J.; McLain, Michael L.; Llinás, J.P.; Talin, A.A.

The rapidly increasing use of electronics in high-radiation environments and the continued evolution in transistor architectures and materials demand improved methods to characterize the potential damaging effects of radiation on device performance. Here, electron-beam-induced current is used to map hot-carrier transport in model metal-oxide semiconductor field-effect transistors irradiated with a 300 KeV focused He+ beam as a localized line spanning across the gate and bulk Si. By correlating the damage to the electronic properties and combining these results with simulations, the contribution of spatially localized radiation damage on the device characteristics is obtained. This identified damage, caused by the He+ beam, is attributed to localized interfacial Pb centers and delocalized positive fixed-charges, as surmised from simulations. Comprehension of the long-term interaction and mobility of radiation-induced damage are key for future design of rad-hard devices.

More Details

Investigating Heavy-Ion Effects on 14-nm Process FinFETs: Displacement Damage Versus Total Ionizing Dose

IEEE Transactions on Nuclear Science

Esposito, Madeline G.; Manuel, Jack E.; Privat, Aymeric; Xiao, T.P.; Garland, Diana; Bielejec, Edward S.; Vizkelethy, Gyorgy V.; Dickerson, Jeramy R.; Brunhaver, John S.; Talin, A.A.; Ashby, David; King, Michael P.; Barnaby, Hugh; McLain, Michael L.; Marinella, Matthew J.

Bulk 14-nm FinFET technology was irradiated in a heavy-ion environment (42-MeV Si ions) to study the possibility of displacement damage (DD) in scaled technology devices, resulting in drive current degradation with increased cumulative fluence. These devices were also exposed to an electron beam, proton beam, and cobalt-60 source (gamma radiation) to further elucidate the physics of the device response. Annealing measurements show minimal to no 'rebound' in the ON-state current back to its initial high value; however, the OFF-state current 'rebound' was significant for gamma radiation environments. Low-temperature experiments of the heavy-ion-irradiated devices reveal increased defect concentration as the result for mobility degradation with increased fluence. Furthermore, the subthreshold slope (SS) temperature dependence uncovers a possible mechanism of increased defect bulk traps contributing to tunneling at low temperatures. Simulation work in Silvaco technology computer-aided design (TCAD) suggests that the increased OFF-state current is a total ionizing dose (TID) effect due to oxide traps in the shallow trench isolation (STI). The significant SS elongation and ON-state current degradation could only be produced when bulk traps in the channel were added. Heavy-ion irradiation on bulk 14-nm FinFETs was found to be a combination of TID and DD effects.

More Details

Heavy-Ion-Induced Displacement Damage Effects in Magnetic Tunnel Junctions with Perpendicular Anisotropy

IEEE Transactions on Nuclear Science

Xiao, T.P.; Bennett, Christopher H.; Mancoff, Frederick B.; Manuel, Jack E.; Hughart, David R.; Jacobs-Gedrim, Robin B.; Bielejec, Edward S.; Vizkelethy, Gyorgy V.; Sun, Jijun; Aggarwal, Sanjeev; Arghavani, Reza A.; Marinella, Matthew J.

We evaluate the resilience of CoFeB/MgO/CoFeB magnetic tunnel junctions (MTJs) with perpendicular magnetic anisotropy (PMA) to displacement damage induced by heavy-ion irradiation. MTJs were exposed to 3-MeV Ta2+ ions at different levels of ion beam fluence spanning five orders of magnitude. The devices remained insensitive to beam fluences up to $10^{11}$ ions/cm2, beyond which a gradual degradation in the device magnetoresistance, coercive magnetic field, and spin-transfer-torque (STT) switching voltage were observed, ending with a complete loss of magnetoresistance at very high levels of displacement damage (>0.035 displacements per atom). The loss of magnetoresistance is attributed to structural damage at the MgO interfaces, which allows electrons to scatter among the propagating modes within the tunnel barrier and reduces the net spin polarization. Ion-induced damage to the interface also reduces the PMA. This study clarifies the displacement damage thresholds that lead to significant irreversible changes in the characteristics of STT magnetic random access memory (STT-MRAM) and elucidates the physical mechanisms underlying the deterioration in device properties.

More Details

Optimization of target lifetime for production of 14 MeV neutrons

Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms

Wampler, W.R.; Doyle, B.L.; Snow, C.S.; Vizkelethy, Gyorgy V.; Jasica, M.J.

Two methods are examined for extending the life of tritium targets for production of 14 MeV neutrons by the 3H(2H,n)4He nuclear reaction. With thick film targets the neutron production rate decreases with time due to isotope exchange of tritium in the film with implanted deuterium. In this case, the target life is maximized by operating the target at elevated temperature where the implanted deuterium mixes by thermal diffusion throughout the entire thickness of the film. The number of neutrons obtained from a target is then proportional to the initial tritium content of the film. A novel thin-film target design was also developed and tested. With these thin-film targets, the incident deuterium is implanted through the tritide into the underlying substrate material. A thin permeation barrier layer between the tritide film and substrate, reduces the rate of tritium loss from the tritide film. Good thin-film target performance was achieved using W and Fe for the barrier and substrate materials respectively. Thin-film targets were fabricated and tested and shown to produce similar number of neutrons as thick-film targets while using only a small fraction of the amount of tritium.

More Details

Photocurrent from single collision 14-MeV neutrons in GaN and GaAs

IEEE Transactions on Nuclear Science

Jasica, Matthew J.; Wampler, William R.; Vizkelethy, Gyorgy V.; Hehr, Brian D.; Bielejec, Edward S.

Accurate predictions of device performance in 14-MeV neutron environments rely upon understanding the recoil cascades that may be produced. Recoils from 14-MeV neutrons impinging on both gallium nitride (GaN) and gallium arsenide (GaAs) devices were modeled and compared to the recoil spectra of devices exposed to 14-MeV neutrons. Recoil spectra were generated using nuclear reaction modeling programs and converted into an ionizing energy loss (IEL) spectrum. We measured the recoil IEL spectra by capturing the photocurrent pulses produced by single neutron interactions with the device. Good agreement, with a factor of two, was found between the model and the experiment under strongly depleted conditions. However, this range of agreement between the model and the experiment decreased significantly when the bias was removed, indicating partial energy deposition due to cascades that escape the active volume of the device not captured by the model. Consistent event rates across multiple detectors confirm the reliability of our neutron recoil detection method.

More Details

14 MeV DT Neutron Test Facility at the Sandia Ion Beam Laboratory

Wampler, William R.; Doyle, Barney L.; Vizkelethy, Gyorgy V.; Bielejec, Edward S.; Snow, Clark S.; Styron, Jedediah D.; Jasica, Matthew J.

This report documents work done at the Sandia Ion Beam Laboratory to develop a capability to produce 14 Me neutrons at levels sufficient for testing radiation effects on electronic materials and components. The work was primarily enabled by a laboratory directed research and development (LDRD) project. The main elements of the work were to optimize target lifetime, test a new thin- film target design concept to reduce tritium usage, design and construct a new target chamber and beamline optimized for high-flux tests, and conduct tests of effects on electronic devices and components. These tasks were all successfully completed. The improvements in target performance and target chamber design have increased the flux and fluence of 14 MV neutrons available at the test location by several orders of magnitude. The outcome of the project is that a new capability for testing radiation-effects on electronic components from 14 MeV neutrons is now available at Sandia National Laboratories. This capability has already been extensively used for many qualification and component evaluation and development tests.

More Details

Training a Neural Network on Analog TaOx ReRAM Devices Irradiated With Heavy Ions: Effects on Classification Accuracy Demonstrated With CrossSim

IEEE Transactions on Nuclear Science

Jacobs-Gedrim, Robin B.; Hughart, David R.; Agarwal, Sapan A.; Vizkelethy, Gyorgy V.; Bielejec, E.S.; Vaandrager, Bastiaan L.; Swanson, Scot E.; Knisely, K.E.; Taggart, J.L.; Barnaby, H.J.; Marinella, M.J.

The image classification accuracy of a TaOx ReRAM-based neuromorphic computing accelerator is evaluated after intentionally inducing a displacement damage up to a fluence of 1014 2.5-MeV Si ions/cm2 on the analog devices that are used to store weights. Results are consistent with a radiation-induced oxygen vacancy production mechanism. When the device is in the high-resistance state during heavy ion radiation, the device resistance, linearity, and accuracy after training are only affected by high fluence levels. The findings in this paper are in accordance with the results of previous studies on TaOx-based digital resistive random access memory. When the device is in the low-resistance state during irradiation, no resistance change was detected, but devices with a 4-kΩ inline resistor did show a reduction in accuracy after training at 1014 2.5-MeV Si ions/cm2. This indicates that changes in resistance can only be somewhat correlated with changes to devices' analog properties. This paper demonstrates that TaOx devices are radiation tolerant not only for high radiation environment digital memory applications but also when operated in an analog mode suitable for neuromorphic computation and training on new data sets.

More Details

Analysis of the IBL and LBNL irradiated PIN and PN diodes

Vizkelethy, Gyorgy V.; Bielejec, Edward S.; Aguirre, Brandon A.

This report is a follow-up to the previous report on the difference between high fluence, high and low flux irradiations. There was a discrepancy in the data for the LBNL irradiated S5821 PIN diodes. There were diodes irradiated in the two batches (high and low flux) with the same flux and fluence for reference (lell ions/cm2/shot and 5, 10, and 20 ions/cm2 total flux). Although these diodes should have the same electrical characteristics their leakage currents were different by a factor of 5-6 (batch 2 was larger). Also, the C-V measurements showed drastically different results. It was speculated that these discrepancies were due to one of the following two reasons: 1. Different times elapsed between radiation and characterization. 2. Different areas were irradiated (roughly half of the diodes were covered during irradiation). To address the first concern, we annealed the devices according to the ASTM standard [1]. The differences remained the same. To determine the irradiated area, we performed large area IBIC scans on several devices. Error! Reference source not found. below shows the IBIC maps of two devices one from each batch. The irradiated areas are approximately the same.

More Details

Stochastic Gain Degradation in III-V Heterojunction Bipolar Transistors Due to Single Particle Displacement Damage

IEEE Transactions on Nuclear Science

Vizkelethy, Gyorgy V.; Bielejec, Edward S.; Aguirre, Brandon A.

As device dimensions decrease, single displacement effects become more important. We measured the gain degradation in III-V heterojunction bipolar transistors due to single particles using a heavy ion microbeam. Two devices with different sizes were irradiated with various ion species ranging from oxygen to gold to study the effect of the irradiation ion mass on gain change. From the single steps in the inverse gain (which is proportional to the number of defects), we calculated cumulative distribution functions to help determine design margins. The displacement process was modeled using the MARLOWE binary collision approximation code. The entire structure of the device was modeled and the defects in the base-emitter junction were counted to be compared with the experimental results. While we found good agreement for the large device, we had to modify our model to reach reasonable agreement for the small device.

More Details

The Determination of Radiation Hardness of Semiconductor Materials and Devices with Ion Beams

Vizkelethy, Gyorgy V.; Vittone, Ettore V.; Pastuovic, Zjelko P.; Siegele, Rainer S.; Jaksic, Milko J.; Grilj, Veljko G.; Skukan, Natko S.; Garcia Lopez, Javier G.; Jimenez Ramos, Carmen J.

lon accelerator based techniques provide unique tools to gain insight into the phenomena underlying the formation of defects induced by energetic particles in semiconductor materials and their effects on the electronic features of the device. In recognition of the potential of these techniques, with the aim of enhancing the understanding of the mechanisms underlying the degradation of the performances of semiconductor devices induced by ionizing radiation, the IAEA established a Research Project, coordinated by the Physics Section (CRP F11016) entitled "Utilization of ion accelerators for studying and modelling of radiation induced defects in semiconductors and insulators" at the end of 2011. The objective of this IAEA Coordinated Research Project (CRP) was to enhance the capabilities of the interested Member States by facilitating their collective efforts to use accelerator-based ion irradiation of electronic materials in conjunction with available advanced characterization techniques to gain a deeper understanding of how different types of radiation influences the electronic properties of materials and devices, leading to an improved radiation hardness. A dynamic and productive research was stimulated by this CRP among collaborating partners, resulting in publications in scientific journals [CRP2016], educational and scientific software packages [W8, Forneris2014], and a number of collaborations among the participating research groups. Two of the most significant outcomes of this project are i) the experimental protocol, which rationalizes the use of the many existing characterization techniques adopted to investigate radiation effects in semiconductor devices and ii) the relevant theoretical approach to interpret the experimental data [Vittone2016 and references therein]. This publication integrates output of research articles published by the partners of the CRP and is aimed to provide an exhaustive description of the experimental protocol, the theoretical model with the relevant limits of application, the data analysis procedure, and the physical observables which can be effectively measured and which can be used for assessment of the radiation hardness of semiconductor devices. The intended audience of this report includes all those professionals and technologists working in ion beam functional analysis of semiconductor materials, solid-state physicists and engineers involved in the design of electronic devices working in radiation harsh environments.

More Details

Nuclear microprobe investigation of the effects of ionization and displacement damage in vertical, high voltage GaN diodes

Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms

Vizkelethy, Gyorgy V.; King, M.P.; Aktas, O.; Kizilyalli, I.C.; Kaplar, Robert K.

Radiation responses of high-voltage, vertical gallium-nitride (GaN) diodes were investigated using Sandia National Laboratories’ nuclear microprobe. Effects of the ionization and the displacement damage were studied using various ion beams. We found that the devices show avalanche effect for heavy ions operated under bias well below the breakdown voltage. The displacement damage experiments showed a surprising effect for moderate damage: the charge collection efficiency demonstrated an increase instead of a decrease for higher bias voltages.

More Details
Results 1–50 of 110
Results 1–50 of 110