Publications

Results 1–25 of 44
Skip to search filters

Measurements of Magneto-Rayleigh-Taylor instability growth in initially solid liners on the Z facility

Sinars, Daniel S.; Edens, Aaron E.; Lopez, Mike R.; Smith, Ian C.; Slutz, Stephen A.; Shores, Jonathon S.; Bennett, Guy R.; Atherton, B.W.; Savage, Mark E.; Stygar, William A.; Leifeste, Gordon T.; Herrmann, Mark H.; Cuneo, M.E.; Peterson, Kyle J.; McBride, Ryan D.; Jennings, Christopher A.; Vesey, Roger A.; Nakhleh, Charles N.

Abstract not provided.

Measurements of magneto-Rayleigh-Taylor instability growth during the implosion of initially solid metal liners

Physics of Plasmas

Sinars, Daniel S.; Edens, Aaron E.; Lopez, Mike R.; Smith, Ian C.; Shores, Jonathon S.; Slutz, Stephen A.; Bennett, Guy R.; Atherton, B.W.; Savage, Mark E.; Stygar, William A.; Leifeste, Gordon T.; Herrmann, Mark H.; McBride, Ryan D.; Cuneo, M.E.; Jennings, Christopher A.; Peterson, Kyle J.; Vesey, Roger A.; Nakhleh, Charles N.

Abstract not provided.

Achromatic circular polarization generation for ultra-intense lasers

Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference: 2010 Laser Science to Photonic Applications, CLEO/QELS 2010

Rambo, Patrick K.; Kimmel, Mark W.; Bennett, Guy R.; Schwarz, Jens S.; Schollmeier, Marius; Atherton, B.W.

Generating circular polarization for ultra-intense lasers requires solutions beyond traditional transmissive waveplates which have insufficient bandwidth and pose nonlinear phase (B-integral) problems. We demonstrate a reflective design employing 3 metallic mirrors to generate circular polarization. ©2010 Optical Society of America.

More Details

High-efficiency high-energy Ka source for the critically-required maximum illumination of x-ray optics on Z using Z-petawatt-driven laser-breakout-afterburner accelerated ultrarelativistic electrons LDRD

Bennett, Guy R.; Sefkow, Adam B.

Under the auspices of the Science of Extreme Environments LDRD program, a <2 year theoretical- and computational-physics study was performed (LDRD Project 130805) by Guy R Bennett (formally in Center-01600) and Adam B. Sefkow (Center-01600): To investigate novel target designs by which a short-pulse, PW-class beam could create a brighter K{alpha} x-ray source than by simple, direct-laser-irradiation of a flat foil; Direct-Foil-Irradiation (DFI). The computational studies - which are still ongoing at this writing - were performed primarily on the RedStorm supercomputer at Sandia National Laboratories Albuquerque site. The motivation for a higher efficiency K{alpha} emitter was very clear: as the backlighter flux for any x-ray imaging technique on the Z accelerator increases, the signal-to-noise and signal-to-background ratios improve. This ultimately allows the imaging system to reach its full quantitative potential as a diagnostic. Depending on the particular application/experiment this would imply, for example, that the system would have reached its full design spatial resolution and thus the capability to see features that might otherwise be indiscernible with a traditional DFI-like x-ray source. This LDRD began FY09 and ended FY10.

More Details

Measurements of Magneto-Rayleigh-Taylor instability growth in solid liners on the 20 MA Z facility

Sinars, Daniel S.; Edens, Aaron E.; Lopez, Mike R.; Smith, Ian C.; Shores, Jonathon S.; Bennett, Guy R.; Atherton, B.W.; Savage, Mark E.; Stygar, William A.; Leifeste, Gordon T.; Slutz, Stephen A.; Herrmann, Mark H.; Cuneo, M.E.; Peterson, Kyle J.; McBride, Ryan D.; Vesey, Roger A.; Nakhleh, Charles N.; Tomlinson, Kurt T.

The magneto-Rayleigh-Taylor (MRT) instability is the most important instability for determining whether a cylindrical liner can be compressed to its axis in a relatively intact form, a requirement for achieving the high pressures needed for inertial confinement fusion (ICF) and other high energy-density physics applications. While there are many published RT studies, there are a handful of well-characterized MRT experiments at time scales >1 {micro}s and none for 100 ns z-pinch implosions. Experiments used solid Al liners with outer radii of 3.16 mm and thicknesses of 292 {micro}m, dimensions similar to magnetically-driven ICF target designs [1]. In most tests the MRT instability was seeded with sinusoidal perturbations ({lambda} = 200, 400 {micro}m, peak-to-valley amplitudes of 10, 20 {micro}m, respectively), wavelengths similar to those predicted to dominate near stagnation. Radiographs show the evolution of the MRT instability and the effects of current-induced ablation of mass from the liner surface. Additional Al liner tests used 25-200 {micro}m wavelengths and flat surfaces. Codes being used to design magnetized liner ICF loads [1] match the features seen except at the smallest scales (<50 {micro}m). Recent experiments used Be liners to enable penetrating radiography using the same 6.151 keV diagnostics and provide an in-flight measurement of the liner density profile.

More Details

Achromatic circular polarization generation for ultra-intense lasers

Rambo, Patrick K.; Kimmel, Mark W.; Bennett, Guy R.; Schwarz, Jens S.; Schollmeier, Marius; Atherton, B.W.

Generating circular polarization for ultra-intense lasers requires solutions beyond traditional transmissive waveplates which have insufficient bandwidth and pose nonlinear phase (B-integral) problems. We demonstrate a reflective design employing 3 metallic mirrors to generate circular polarization.

More Details

Fill-Tube-Induced Mass Perturbations on X-Ray-Driven, Ignition-Scale, Inertial-Confinement-Fusion Capsule Shells and the Implications for Ignition Experiments

Physical Review Letters

Bennett, Guy R.; Keller, Keith L.; Mulville, Thomas D.; Peterson, Kyle J.; Sinars, Daniel S.; Smith, Ian C.; Vesey, Roger A.; Herrmann, Mark H.; Christenson, Peggy J.; Cuneo, M.E.

We present on the first inertial-confinement-fusion ignition facility, the target capsule will be DT filled through a long, narrow tube inserted into the shell. μg-scale shell perturbations Δm' arising from multiple, 10–50 μm-diameter, hollow SiO2 tubes on x-ray-driven, ignition-scale, 1-mg capsules have been measured on a subignition device. Finally, simulations compare well with observation, whence it is corroborated that Δm' arises from early x-ray shadowing by the tube rather than tube mass coupling to the shell, and inferred that 10–20 μm tubes will negligibly affect fusion yield on a full-ignition facility.

More Details
Results 1–25 of 44
Results 1–25 of 44