Power Spectrum Analysis (PSA) for Counterfeit and Aging Detection
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Conference Proceedings from the International Symposium for Testing and Failure Analysis
We present a new, non-destructive electrical technique, Power Spectrum Analysis (PSA). PSA as described here uses off-normal biasing, an unconventional way of powering microelectronics devices. PSA with off-normal biasing can be used to detect subtle differences between microelectronic devices. These differences, in many cases, cannot be detected by conventional electrical testing. In this paper, we highlight PSA applications related to aging and counterfeit detection.
Abstract not provided.
Abstract not provided.
Abstract not provided.
The objective of this work was to understand the fundamental physics of extremely high frequency RF effects on electronics. To accomplish this objective, we produced models, conducted simulations, and performed measurements to identify the mechanisms of effects as frequency increases into the millimeter-wave regime. Our purpose was to answer the questions, 'What are the tradeoffs between coupling, transmission losses, and device responses as frequency increases?', and, 'How high in frequency do effects on electronic systems continue to occur?' Using full wave electromagnetics codes and a transmission-line/circuit code, we investigated how extremely high-frequency RF propagates on wires and printed circuit board traces. We investigated both field-to-wire coupling and direct illumination of printed circuit boards to determine the significant mechanisms for inducing currents at device terminals. We measured coupling to wires and attenuation along wires for comparison to the simulations, looking at plane-wave coupling as it launches modes onto single and multiconductor structures. We simulated the response of discrete and integrated circuit semiconductor devices to those high-frequency currents and voltages, using SGFramework, the open-source General-purpose Semiconductor Simulator (gss), and Sandia's Charon semiconductor device physics codes. This report documents our findings.
Abstract not provided.
IEEE Transactions on Plasma Science
Prior to this research, we have developed high-gain GaAs photoconductive semiconductor switches (PCSSs) to trigger 50-300 kV high-voltage switches (HVSs). We have demonstrated that PCSSs can trigger a variety of pulsed-power switches operating at 50300 kV by locating the trigger generator (TG) directly at the HVS. This was demonstrated for two types of dc-charged trigatrons and two types of field distortion midplane switches, including a ±100 kVDC switch produced by the High Current Electronics Institute used in the linear transformer driver. The lowest rms jitter obtained from triggering an HVS with a PCSS was 100 ps from a 300 kV pulse-charged trigatron. PCSSs are the key component in these independently timed fiber-optically controlled low jitter TGs for HVSs. TGs are critical subsystems for reliable and efficient pulsed-power facilities because they control the timing synchronization and amplitude variation of multiple pulse-forming lines that combine to produce the total system output. Future facility-scale pulsed-power systems are even more dependent on triggering, as they are composed of many more triggered HVSs, and they produce shaped pulses by independent timing of the HVSs. As pulsed-power systems become more complex, the complexity of the associated trigger systems also increases. One of the means to reduce this complexity is to allow the trigger system to be charged directly from the voltage appearing across the HVS. However, for slow or dc-charged pulsed-power systems, this can be particularly challenging as the dc hold-off of the PCSS dramatically declines. This paper presents results that are seeking to address HVS performance requirements over large operating ranges by triggering using a pulsed-charged PCSS-based TG. Switch operating conditions that are as low as 45% of the self-break were achieved. A dc-charged PCSS-based TG is also introduced and demonstrated over a 39-61 kV operating range. DC-charged PCSS allows the TG to be directly charged from slow or dc-charged pulsed-power systems. GaAs and neutron-irradiated GaAs (n-GaAs) PCSSs were used to investigate the dc-charged operation. © 2010 IEEE.
Advanced optically-activated solid-state electrical switch development at Sandia has demonstrated multi-kA/kV switching and the path for scalability to even higher current/power. Realization of this potential requires development of new optical sources/switches based on key Sandia photonic device technologies: vertical-cavity surface-emitting lasers (VCSELs) and photoconductive semiconductor switch (PCSS) devices. The key to increasing the switching capacity of PCSS devices to 5kV/5kA and higher is to distribute the current in multiple parallel line filaments triggered by an array of high-brightness line-shaped illuminators. Commercial mechanically-stacked edge-emitting lasers have been used to trigger multiple filaments, but they are difficult to scale and manufacture with the required uniformity. In VCSEL arrays, adjacent lasers utilize identical semiconductor material and are lithographically patterned to the required dimensions. We have demonstrated multiple-line filament triggering using VCSEL arrays to approximate line generation. These arrays of uncoupled circular-aperture VCSELs have fill factors ranging from 2% to 30%. Using these arrays, we have developed a better understanding of the illumination requirements for stable triggering of multiple-filament PCSS devices. Photoconductive semiconductor switch (PCSS) devices offer advantages of high voltage operation (multi-kV), optical isolation, triggering with laser pulses that cannot occur accidentally in nature, low cost, high speed, small size, and radiation hardness. PCSS devices are candidates for an assortment of potential applications that require multi-kA switching of current. The key to increasing the switching capacity of PCSS devices to 5kV/5kA and higher is to distribute the current in multiple parallel line filaments triggered by an array of high-brightness line-shaped illuminators. Commercial mechanically-stacked edge-emitting lasers have been demonstrated to trigger multiple filaments, but they are difficult to scale and manufacture with the required uniformity. As a promising alternative to multiple discrete edge-emitting lasers, a single wafer of vertical-cavity surface-emitting lasers (VCSELs) can be lithographically patterned to achieve the desired layout of parallel line-shaped emitters, in which adjacent lasers utilize identical semiconductor material and thereby achieve a degree of intrinsic optical uniformity. Under this LDRD project, we have fabricated arrays of uncoupled circular-aperture VCSELs to approximate a line-shaped illumination pattern, achieving optical fill factors ranging from 2% to 30%. We have applied these VCSEL arrays to demonstrate single and dual parallel line-filament triggering of PCSS devices. Moreover, we have developed a better understanding of the illumination requirements for stable triggering of multiple-filament PCSS devices using VCSEL arrays. We have found that reliable triggering of multiple filaments requires matching of the turn-on time of adjacent VCSEL line-shaped-arrays to within approximately 1 ns. Additionally, we discovered that reliable triggering of PCSS devices at low voltages requires more optical power than we obtained with our first generation of VCSEL arrays. A second generation of higher-power VCSEL arrays was designed and fabricated at the end of this LDRD project, and testing with PCSS devices is currently underway (as of September 2008).
Abstract not provided.
PPPS-2007 - Pulsed Power Plasma Science 2007
We are developing advanced optically-activated solid-state switch technology for Firing Sets. Advanced switch development at Sandia has demonstrated multikA/kV switching and the path for scalability to even higher current/power, resulting in good prospects for sprytron replacement and other even higher current pulsed power switching applications. Realization of this potential requires development of new optical sources/switches based on key Sandia photonic device technologies: vertical-cavity surface-emitting lasers (VCSELs) and photoconductive semiconductor switch (PCSS) devices. The key to increasing the switching capacity of PCSS devices to 5kV/5kA and higher has been to distribute the current in multiple parallel line filaments triggered by an array of high-brightness line-shaped illuminators.1 This was limited by commercial mechanically-stacked edgeemitting lasers, which are difficult to scale and manufacture with the required uniformity. In VCSEL arrays, adjacent lasers utilize identical semiconductor material and are lithographically patterned to the required aspect ratio. However, we have demonstrated that good optical uniformity in rectangular-aperture (e.g. 5-by- 500μmu; m) VCSELs is difficult to achieve due to the lack of optical confinement in the long dimension. We have demonstrated line filament triggering using 1-D VCSEL arrays to approximate line generation. These arrays of uncoupled circular-aperture VCSELs have fill factors ranging from 2% to 40%. Using these arrays, we are developing a better understanding of the illumination requirements for stable triggering of multiple-filament PCSS devices. In particular, we are examining the dependence of filament formation versus the illumination fill factor and spatial brightness along the length of the filament. Ultimately, we will apply effective index techniques, pioneered at Sandia for leaky-mode VCSELs, to create a lateral photonic lattice that selects a single transverse mode with high brightness and uniformity for even higher fill factors and illumination unformity.2 These sources will be developed and tested with complementary PCSS designs employing interdigitatedmulti-filament contacts for high-power switching. ©2007 IEEE.
Abstract not provided.
Abstract not provided.
This report summarizes an LDRD effort which looked at the feasibility of building a MEMS (Micro-Electro-Mechanical Systems) fabricated 100 GHz micro vacuum tube. PIC Simulations proved to be a very useful tool in investigating various device designs. Scaling parameters were identified. This in turn allowed predictions of oscillator growth based on beam parameters, cavity geometry, and cavity loading. The electron beam source was identified as a critical element of the design. FEA's (Field Emission Arrays) were purchased to be built into the micro device. Laboratory testing of the FEA's was also performed which pointed out care and handling issues along with maximum current capabilities. Progress was made toward MEMS fabrication of the device. Techniques were developed and successfully employed to build up several of the subassemblies of the device. However, the lower wall fabrication proved to be difficult and a successful build was not completed. Alternative approaches to building this structure have been identified. Although these alternatives look like good solutions for building the device, it was not possible to complete a redesign and build during the timeframe of this effort.
Abstract not provided.
Experimental evidence and corresponding theoretical analyses have led to the conclusion that the system composed of Xe hollow atom states, that produce a characteristic Xe(L) spontaneous emission spectrum at 1 {at} 2.9 {angstrom} and arise from the excitation of Xe clusters with an intense pulse of 248 nm radiation propagating in a self-trapped plasma channel, closely represents the ideal situation sought for amplification in the multikilovolt region. The key innovation that is central to all aspects of the proposed work is the controlled compression of power to the level ({approx} 10{sup 20} W/cm{sup 3}) corresponding to the maximum achieved by thermonuclear events. Furthermore, since the x-ray power that is produced appears in a coherent form, an entirely new domain of physical interaction is encountered that involves states of matter that are both highly excited and highly ordered. Moreover, these findings lead to the concept of 'photonstaging', an idea which offers the possibility of advancing the power compression by an additional factor of {approx} 10{sup 9} to {approx} 10{sup 29} W/cm{sup 3}. In this completely unexplored regime, g-ray production ({h_bar}{omega}{sub {gamma}} {approx} 1 MeV) is expected to be a leading process. A new technology for the production of very highly penetrating radiation would then be available. The Xe(L) source at {h_bar}{omega}{sub x} {approx} 4.5 keV can be applied immediately to the experimental study of many aspects of the coupling of intense femtosecond x-ray pulses to materials. In a joint collaboration, the UIC group and Sandia plan to explore the following areas. These are specifically, (1) anomalous electromagnetic coupling to solid state materials, (2) 3D nanoimaging of solid matter and hydrated biological materials (e.g. interchromosomal linkers and actin filaments in muscle), and (3) EMP generation with attosecond x-rays.
For many decades, engineers and scientists have studied the effects of high power microwaves (HPM) on electronics. These studies usually focus on means of delivering energy to upset electronic equipment and ways to protect equipment from HPM. The motivation for these studies is to develop the knowledge necessary either to cause disruption or to protect electronics from disruption. Since electronic circuits must absorb sufficient energy to fail and the source used to deliver this energy is far away from the electronic circuit, the source must emit a large quantity of energy. In free space, for example, as the distance between the source and the target increases, the source energy must increase by the square of distance. The HPM community has dedicated substantial resources to the development of higher energy sources as a result. Recently, members of the HPM community suggested a new disruption mechanism that could potentially cause system disruptions at much lower energy levels. The new mechanism, based on nonlinear dynamics, requires an expanded theory of circuit operation. This report summarizes an investigation of electronic circuit nonlinear behavior as it applies to inductor-resistor-diode circuits (known as the Linsay circuit) and phased-locked-loops. With the improvement in computing power and the need to model circuit behavior with greater precision, the nonlinear effects of circuit has become very important. In addition, every integrated circuit has as part of its design a protective circuit. These protective circuits use some variation of semiconductor junctions that can interact with parasitic components, present in every real system. Hence, the protective circuit can behave as a Linsay circuit. Although the nonlinear behavior is understandable, it is difficult to model accurately. Many researchers have used classical diode models successfully to show nonlinear effects within predicted regions of operation. However, these models do not accurately predict measured results. This study shows that models based on SPICE, although they exhibit chaotic behavior, do not properly reproduce circuit behavior without modifying diode parameters. This report describes the models and considerations used to model circuit behavior in the nonlinear range of operation. Further, it describes how a modified SPICE diode model improves the simulation results. We also studied the nonlinear behavior of a phased-locked-loop. Phased-locked loops are fundamental building block to many major systems (aileron, seeker heads, etc). We showed that an injected RF signal could drive the phased-locked-loop into chaos. During these chaotic episodes, the frequency of the phased-locked-loop takes excursion outside its normal range of operation. In addition to these excursions, the phased-locked-loop and the system it is controlling requires some time to get back into normal operation. The phased-locked-loop only needs to be upset enough long enough to keep it off balance.
Abstract not provided.
Abstract not provided.
Proposed for publication in Journal of Applied Physics.
Abstract not provided.
Abstract not provided.
This report summarizes an investigation of the use of high-gain Photo-Conductive Semiconductor Switch (PCSS) technology for a deployable impulse source. This includes a discussion of viability, packaging, and antennas. High gain GaAs PCSS-based designs offer potential advantages in terms of compactness, repetition rate, and cost.