Publications

97 Results
Skip to search filters

Ion implantation for deterministic single atom devices

Review of Scientific Instruments

Pacheco, Jose L.; Singh, M.; Perry, Daniel L.; Wendt, J.R.; Ten Eyck, Gregory A.; Manginell, Ronald P.; Pluym, Tammy P.; Luhman, Dwight R.; Lilly, M.P.; Carroll, Malcolm; Bielejec, E.

We demonstrate a capability of deterministic doping at the single atom level using a combination of direct write focused ion beam and solid-state ion detectors. The focused ion beam system can position a single ion to within 35 nm of a targeted location and the detection system is sensitive to single low energy heavy ions. This platform can be used to deterministically fabricate single atom devices in materials where the nanostructure and ion detectors can be integrated, including donor-based qubits in Si and color centers in diamond.

More Details

Coupling MOS quantum dot and phosphorous donor qubit systems

Technical Digest - International Electron Devices Meeting, IEDM

Rudolph, Martin R.; Harvey-Collard, P.; Jock, R.; Jacobson, Noah T.; Wendt, J.R.; Pluym, Tammy P.; Dominguez, Jason J.; Ten Eyck, Gregory A.; Manginell, Ronald P.; Lilly, M.P.; Carroll, Malcolm

Si-MOS based QD qubits are attractive due to their similarity to the current semiconductor industry. We introduce a highly tunable MOS foundry compatible qubit design that couples an electrostatic quantum dot (QD) with an implanted donor. We show for the first time coherent two-axis control of a two-electron spin logical qubit that evolves under the QD-donor exchange interaction and the hyperfine interaction with the donor nucleus. The two interactions are tuned electrically with surface gate voltages to provide control of both qubit axes. Qubit decoherence is influenced by charge noise, which is of similar strength as epitaxial systems like GaAs and Si/SiGe.

More Details

Coupling MOS quantum dot and phosphorous donor qubit systems

IEEE International Electron Devices Meeting

Rudolph, Martin R.; Jock, Ryan M.; Jacobson, Noah T.; Wendt, J.R.; Pluym, Tammy P.; Dominguez, Jason J.; Ten Eyck, Gregory A.; Manginell, Ronald P.; Lilly, Michael L.; Carroll, Malcolm; Harvey-Collard, Patrick H.

Si-MOS based QD qubits are attractive due to their similarity to the current semiconductor industry. We introduce a highly tunable MOS foundry compatible qubit design that couples an electrostatic quantum dot (QD) with an implanted donor. We show for the first time coherent two-axis control of a two-electron spin logical qubit that evolves under the QD-donor exchange interaction and the hyperfine interaction with the donor nucleus. The two interactions are tuned electrically with surface gate voltages to provide control of both qubit axes. Qubit decoherence is influenced by charge noise, which is of similar strength as epitaxial systems like GaAs and Si/SiGe.

More Details

Fabrication of quantum dots in undoped Si/Si0.8Ge0.2 heterostructures using a single metal-gate layer

Applied Physics Letters

Lu, Tzu-Ming L.; Gamble, John K.; Muller, Richard P.; Nielsen, Erik N.; Bethke, D.; Ten Eyck, Gregory A.; Pluym, Tammy P.; Wendt, J.R.; Dominguez, Jason J.; Lilly, M.P.; Carroll, Malcolm; Wanke, M.C.

Enhancement-mode Si/SiGe electron quantum dots have been pursued extensively by many groups for their potential in quantum computing. Most of the reported dot designs utilize multiple metal-gate layers and use Si/SiGe heterostructures with Ge concentration close to 30%. Here, we report the fabrication and low-temperature characterization of quantum dots in the Si/Si0.8Ge0.2 heterostructures using only one metal-gate layer. We find that the threshold voltage of a channel narrower than 1 μm increases as the width decreases. The higher threshold can be attributed to the combination of quantum confinement and disorder. We also find that the lower Ge ratio used here leads to a narrower operational gate bias range. The higher threshold combined with the limited gate bias range constrains the device design of lithographic quantum dots. We incorporate such considerations in our device design and demonstrate a quantum dot that can be tuned from a single dot to a double dot. The device uses only a single metal-gate layer, greatly simplifying device design and fabrication.

More Details

Single shot spin readout using a cryogenic high-electron-mobility transistor amplifier at sub-Kelvin temperatures

Applied Physics Letters

Tracy, Lisa A.; Luhman, Dwight R.; Carr, Stephen M.; Bishop, N.C.; Ten Eyck, Gregory A.; Pluym, Tammy P.; Wendt, J.R.; Lilly, M.P.; Carroll, Malcolm

We use a cryogenic high-electron-mobility transistor circuit to amplify the current from a single electron transistor, allowing for demonstration of single shot readout of an electron spin on a single P donor in Si with 100 kHz bandwidth and a signal to noise ratio of ∼9. In order to reduce the impact of cable capacitance, the amplifier is located adjacent to the Si sample, at the mixing chamber stage of a dilution refrigerator. For a current gain of ∼ 2.7 × 10 3, the power dissipation of the amplifier is 13 μW, the bandwidth is ∼ 1.3 MHz, and for frequencies above 300 kHz the current noise referred to input is ≤ 70 fA/ Hz. With this amplification scheme, we are able to observe coherent oscillations of a P donor electron spin in isotopically enriched 28Si with 96% visibility.

More Details

Silicon Quantum Dots with Counted Antimony Donor Implants

Sandia journal manuscript; Not yet accepted for publication

Singh, Meenakshi S.; Pacheco, Jose L.; Perry, Daniel L.; Ten Eyck, Gregory A.; Wendt, J.R.; Pluym, Tammy P.; Dominguez, Jason J.; Manginell, Ronald P.; Luhman, Dwight R.; Bielejec, Edward S.; Lilly, Michael L.; Carroll, Malcolm

Deterministic control over the location and number of donors is crucial to donor spin quantum bits (qubits) in semiconductor based quantum computing. A focused ion beam is used to implant close to quantum dots. Ion detectors are integrated next to the quantum dots to sense the implants. The numbers of ions implanted can be counted to a precision of a single ion. Regular coulomb blockade is observed from the quantum dots. Charge offsets indicative of donor ionization, are observed in devices with counted implants.

More Details

Mid-infrared amplitude and phase measurement of metamaterials using tandem interferometry

Optics InfoBase Conference Papers

Passmore, Brandon S.; Anderson, J.; Ten Eyck, Gregory A.; Wendt, J.R.; Brener, Igal B.; Sinclair, M.B.; Shaner, Eric A.

A tandem interferometer system measuring the absolute phase and amplitude of planar split-ring resonators fabricated on a BaF2 substrate with a designed resonance at 10.5 μm is presented. © 2010 Optical Society of America.

More Details

Double quantum dot with tunable coupling in a Si MOS device with lateral geometry

Lilly, Michael L.; Carroll, Malcolm; Young, Ralph W.; Ten Eyck, Gregory A.; Childs, Kenton D.; Wendt, J.R.; Grubbs, Robert K.

We report low-temperature transport measurements of a silicon metal-oxide-semiconductor (MOS) double quantum dot (DQD). In contrast to previously reported measurements of DQD's in Si MOS structures, our device has a lateral gate geometry very similar to that used by Petta et al. to demonstrate coherent manipulation of single electron spins. This gate design provides a high degree of tunability, allowing for independent control over individual dot occupation and tunnel barriers, as well as the ability to use nearby constrictions to sense dot charge occupation. Comparison of experimentally extracted capacitances between the dot and nearby gates with electrostatic modeling demonstrates the presence of disorder and the ability to partially compensate for this disorder by adjustment of gate voltages. We experimentally show gate-controlled tuning of the interdot coupling over a wide range of energies, an important step towards potential quantum computing applications.

More Details

Spectroscopy and capacitance measurements of tunneling resonances in an Sb-implanted point contact

Bishop, Nathaniel B.; Stevens, Jeffrey S.; Childs, Kenton D.; Ohlhausen, J.A.; Lilly, Michael L.; Carroll, Malcolm; Young, Ralph W.; Bielejec, Edward S.; Ten Eyck, Gregory A.; Wendt, J.R.; Rahman, Rajib R.; Grubbs, Robert K.

We fabricated a split-gate defined point contact in a double gate enhancement mode Si-MOS device, and implanted Sb donor atoms using a self-aligned process. E-beam lithography in combination with a timed implant gives us excellent control over the placement of dopant atoms, and acts as a stepping stone to focused ion beam implantation of single donors. Our approach allows us considerable latitude in experimental design in-situ. We have identified two resonance conditions in the point contact conductance as a function of split gate voltage. Using tunneling spectroscopy, we probed their electronic structure as a function of temperature and magnetic field. We also determine the capacitive coupling between the resonant feature and several gates. Comparison between experimental values and extensive quasi-classical simulations constrain the location and energy of the resonant level. We discuss our results and how they may apply to resonant tunneling through a single donor.

More Details

3D metamaterials for the thermal infrared

Burckel, David B.; Ten Eyck, Gregory A.; Sinclair, Michael B.; Wendt, J.R.

Metamaterials form a new class of artificial electromagnetic materials that provides the device designer with the ability to manipulate the flow of electromagnetic energy in ways that are not achievable with naturally occurring materials. However, progress toward practical implementation of metamaterials, particularly at infrared and visible frequencies, has been hampered by a combination of absorptive losses; the narrow band nature of the resonant metamaterial response; and the difficulty in fabricating fully 3-dimensional structures. They describe the progress of a recently initiated program at Sandia National Laboratories directed toward the development of practical 3D metamaterials operating in the thermal infrared. They discuss their analysis of fundamental loss limits for different classes of metamaterials. In addition, they discuss new design approaches that they are pursuing which reduce the reliance on metallic structures in an effort to minimize ohmic losses.

More Details

Fabrication techniques for 3D metamaterials in the mid-infrared

Wendt, J.R.; Burckel, David B.; Ten Eyck, Gregory A.; Ellis, A.R.; Brener, Igal B.; Sinclair, Michael B.

The authors have developed two versions of a flexible fabrication technique known as membrane projection lithography that can produce nearly arbitrary patterns in '212 D' and fully three-dimensional (3D) structures. The authors have applied this new technique to the fabrication of split ring resonator-based metamaterials in the midinfrared. The technique utilizes electron beam lithography for resolution, pattern design flexibility, and alignment. The resulting structures are nearly three orders of magnitude smaller than equivalent microwave structures that were first used to demonstrate a negative index material. The fully 3D structures are highly isotropic and exhibit both electrically and magnetically excited resonances for incident transverse electromagnetic waves.

More Details

Fabrication of 3-D cubic unit cells with measured IR resonances

Sinclair, Michael B.; Brener, Igal B.; Ten Eyck, Gregory A.; Ellis, A.R.; Ginn, James C.; Wendt, J.R.

3-D cubic unit cell arrays containing split ring resonators were fabricated and characterized. The unit cells are {approx}3 orders-of-magnitude smaller than microwave SRR-based metamaterials and exhibit both electrically and magnetically excited resonances for normally incident TEM waves in addition to showing improved isotropic response.

More Details

Amplitude and phase-resolved measurements of optical metamaterials in the mid-infrared by phase matched electro-optic sampling

Brener, Igal B.; Passmore, Brandon S.; Ten Eyck, Gregory A.; Wendt, J.R.; Sinclair, Michael B.

We describe a time-domain spectroscopy system in the thermal infrared used for complete transmission and reflection characterization of metamaterials in amplitude and phase. The system uses a triple-output near-infrared ultrafast fiber laser, phase-locked difference frequency generation and phase-matched electro-optic sampling. We will present measurements of several metamaterials designs.

More Details

Strained-Si/SiGe enhancement mode structures for quantum computing

Bishop, Nathaniel B.; Ten Eyck, Gregory A.; Lilly, Michael L.; Carroll, Malcolm

Silicon is an ideal system for investigating single electron or isolated donor spins for quantum computation, due to long spin coherence times. Enhancement mode strained-silicon/silicon germanium (sSi/SiGe) devices would offer an as-yet untried path toward electron or electron/donor quantum dot systems. Thin, undoped SiGe dielectrics allow tight electrostatic confinement, as well as potential Lande g-factor engineered spin manipulation. In this talk we summarize recent progress toward sSi/SiGe enhancement mode devices on sSi on insulator, including characterization with X-ray diffraction and atomic force microscopy, as well as challenges faced and progress on integration of either top-down and bottom-up donor placement approaches in a sSi/SiGe enhancement mode structure.

More Details

Resonant coupling to a dipole absorber inside a metamaterial: Anticrossing of the negative index response

Journal of Vacuum Science and Technology B

Smolev, Svyatoslav; Ku, Zahyun; Brueck, S.R.J.; Brener, Igal B.; Sinclair, Michael B.; Ten Eyck, Gregory A.; Langston, William L.; Basilio, Lorena I.

The authors experimentally demonstrate a resonant hybridization between the magnetic dipole structural resonance in the permeability of a fishnet metamaterial and an electric dipole material resonance in the permittivity of the dielectric spacer layer. The hybrid resonances in the permeability and the negative index response exhibit an anticrossing behavior. A simple analytic model and numerical simulations using a rigorous coupled-wave analysis are in excellent qualitative agreement with the experiment. © 2010 American Vacuum Society.

More Details

Electrostatic microvalves utilizing conductive nanoparticles for improved speed, lower power, and higher force actuation

Ten Eyck, Gregory A.; Branson, Eric D.; Cook, Adam W.; Collord, Andrew D.; Givler, R.C.

We have designed and built electrostatically actuated microvalves compatible with integration into a PDMS based microfluidic system. The key innovation for electrostatic actuation was the incorporation of carbon nanotubes into the PDMS valve membrane, allowing for electrostatic charging of the PDMS layer and subsequent discharging, while still allowing for significant distention of the valveseat for low voltage control of the system. Nanoparticles were applied to semi-cured PDMS using a stamp transfer method, and then cured fully to make the valve seats. DC actuation in air of these valves yielded operational voltages as low as 15V, by using a supporting structure above the valve seat that allowed sufficient restoring forces to be applied while not enhancing actuation forces to raise the valve actuation potential. Both actuate to open and actuate to close valves have been demonstrated, and integrated into a microfluidic platform, and demonstrated fluidic control using electrostatic valves.

More Details

Medically relevant ElectroNeedle technology development

Achyuthan, Komandoor A.; Harper, Jason C.; McClain, Jaime L.; Ten Eyck, Gregory A.; Thomas, Michael L.

ElectroNeedles technology was developed as part of an earlier Grand Challenge effort on Bio-Micro Fuel Cell project. During this earlier work, the fabrication of the ElectroNeedles was accomplished along with proof-of-concept work on several electrochemically active analytes such as glucose, quinone and ferricyanide. Additionally, earlier work demonstrated technology potential in the field of immunosensors by specifically detecting Troponin, a cardiac biomarker. The current work focused upon fabrication process reproducibility of the ElectroNeedles and then using the devices to sensitively detect p-cresol, a biomarker for kidney failure or nephrotoxicity. Valuable lessons were learned regarding fabrication assurance and quality. The detection of p-cresol was accomplished by electrochemistry as well as using fluorescence to benchmark ElectroNeedles performance. Results from these studies will serve as a guide for the future fabrication processes involving ElectroNeedles as well as provide the groundwork necessary to expand technology applications. One paper has been accepted for publication acknowledging LDRD funding (K. E. Achyuthan et al, Comb. Chem. & HTS, 2008). We are exploring the scope for a second paper describing the applications potential of this technology.

More Details

Si and SiGe based double top gated accumulation mode single electron transistors for quantum bits

Carroll, Malcolm; Tracy, Lisa A.; Eng, Kevin E.; Ten Eyck, Gregory A.; Stevens, Jeffrey S.; Wendt, J.R.; Lilly, Michael L.

There is significant interest in forming quantum bits (qubits) out of single electron devices for quantum information processing (QIP). Information can be encoded using properties like charge or spin. Spin is appealing because it is less strongly coupled to the solid-state environment so it is believed that the quantum state can better be preserved over longer times (i.e., that is longer decoherence times may be achieved). Long spin decoherence times would allow more complex qubit operations to be completed with higher accuracy. Recently spin qubits were demonstrated by several groups using electrostatically gated modulation doped GaAs double quantum dots (DQD) [1], which represented a significant breakthrough in the solid-state field. Although no Si spin qubit has been demonstrated to date, work on Si and SiGe based spin qubits is motivated by the observation that spin decoherence times can be significantly longer than in GaAs. Spin decoherence times in GaAs are in part limited by the random spectral diffusion of the non-zero nuclear spins of the Ga and As that couple to the electron spin through the hyperfine interaction. This effect can be greatly suppressed by using a semiconductor matrix with a near zero nuclear spin background. Near zero nuclear spin backgrounds can be engineered using Si by growing {sup 28}Si enriched epitaxy. In this talk, we will present fabrication details and electrical transport results of an accumulation mode double top gated Si metal insulator semiconductor (MIS) nanostructure, Fig 1 (a) & (b). We will describe how this single electron device structure represent a path towards forming a Si based spin qubit similar in design as that demonstrated in GaAs. Potential advantages of this novel qubit structure relative to previous approaches include the combination of: no doping (i.e., not modulation doped); variable two-dimensional electron gas (2DEG) density; CMOS compatible processes; and relatively small vertical length scales to achieve smaller dots. A primary concern in this structure is defects at the insulator-silicon interface. The Sandia National Laboratories 0.35 {micro}m fab line was used for critical processing steps including formation of the gate oxide to examine the utility of a standard CMOS quality oxide silicon interface for the purpose of fabricating Si qubits. Large area metal oxide silicon (MOS) structures showed a peak mobility of 15,000 cm{sup 2}/V-s at electron densities of {approx}1 x 10{sup 12} cm{sup -2} for an oxide thickness of 10 nm. Defect density measured using standard C-V techniques was found to be greater with decreasing oxide thickness suggesting a device design trade-off between oxide thickness and quantum dot size. The quantum dot structure is completed using electron beam lithography and poly-silicon etch to form the depletion gates, Fig 1 (a). The accumulation gate is added by introducing a second insulating Al{sub 2}O{sub 3} layer, deposited by atomic layer deposition, followed by an Al top gate deposition, Fig. 1 (b). Initial single electron transistor devices using SiO{sub 2} show significant disorder in structures with relatively large critical dimensions of the order of 200-300 nm, Fig 2. This is not uncommon for large silicon structures and has been cited in the literature [2]. Although smaller structures will likely minimize the effect of disorder and well controlled small Si SETs have been demonstrated [3], the design constraints presented by disorder combined with long term concerns about effects of defects on spin decoherence time (e.g., paramagnetic centers) motivates pursuit of a 2nd generation structure that uses a compound semiconductor approach, an epitaxial SiGe barrier as shown in Fig. 2 (c). SiGe may be used as an electron barrier when combined with tensilely strained Si. The introduction of strained-Si into the double top gated device structure, however, represents additional fabrication challenges. Thermal budget is potentially constrained due to concerns related to strain relaxation. Fabrication details related to the introduction of strained silicon on insulator and SiGe barrier formation into the Sandia National Laboratories 0.35 {micro}m fab line will also be presented.

More Details

Steps toward fabricating cryogenic CMOS compatible single electron devices for future qubits

Ten Eyck, Gregory A.; Tracy, Lisa A.; Wendt, J.R.; Childs, Kenton D.; Stevens, Jeffrey S.; Lilly, Michael L.; Carroll, Malcolm; Eng, Kevin E.

We describe the development of a novel silicon quantum bit (qubit) device architecture that involves using materials that are compatible with a Sandia National Laboratories (SNL) 0.35 mum complementary metal oxide semiconductor (CMOS) process intended to operate at 100 mK. We describe how the qubit structure can be integrated with CMOS electronics, which is believed to have advantages for critical functions like fast single electron electrometry for readout compared to current approaches using radio frequency techniques. Critical materials properties are reviewed and preliminary characterization of the SNL CMOS devices at 4.2 K is presented.

More Details

Vibrational spectroscopy of HNS degradation

Martin, Laura E.; Schmitt, Randal L.; Ten Eyck, Gregory A.; Welle, Eric W.

Hexanitrostilbene (HNS) is a widely used explosive, due in part to its high thermal stability. Degradation of HNS is known to occur through UV, chemical exposure, and heat exposure, which can lead to reduced performance of the material. Common methods of testing for HNS degradation include wet chemical and surface area testing of the material itself, and performance testing of devices that use HNS. The commonly used chemical tests, such as volatility, conductivity and contaminant trapping provide information on contaminants rather than the chemical stability of the HNS itself. Additionally, these tests are destructive in nature. As an alternative to these methods, we have been exploring the use of vibrational spectroscopy as a means of monitoring HNS degradation non-destructively. In particular, infrared (IR) spectroscopy lends itself well to non-destructive analysis. Molecular variations in the material can be identified and compared to pure samples. The utility of IR spectroscopy was evaluated using pressed pellets of HNS exposed to DETA (diethylaminetriamine). Amines are known to degrade HNS, with the proposed product being a {sigma}-adduct. We have followed these changes as a function of time using various IR sampling techniques including photoacoustic and attenuated total reflectance (ATR).

More Details
97 Results
97 Results